Skip to main content

The quasi-geostrophic theory of the thermal shallow water equations

  • Emma S. Warneford (a1) and Paul J. Dellar (a1)

The thermal shallow water equations provide a depth-averaged description of motions in a fluid layer that permits horizontal variations in material properties. They typically arise through an equivalent barotropic approximation of a two-layer system, with a spatially varying density contrast due to an evolving temperature field in the active layer. We formalize a previous derivation of the quasi-geostrophic (QG) theory of these equations, by performing a direct asymptotic expansion for small Rossby number. We then present a second derivation as the small Rossby number limit of a balanced model that projects out high-frequency dynamics due to inertia-gravity waves. This latter derivation has wider validity, not being restricted to mid-latitude $\beta $ -planes. We also derive their local energy conservation equation from the QG limit of a thermal shallow water pseudo-energy conservation equation. This derivation involves the ageostrophic correction to the leading-order geostrophic velocity that is eliminated in the usual derivation of a closed evolution equation for the QG potential vorticity. Finally, we derive the non-canonical Hamiltonian structure of the thermal QG equations from a decomposition in Rossby number of a pseudo-energy and Poisson bracket for the thermal shallow water equations.

Corresponding author
Email address for correspondence:
Hide All
Adcroft, A. & Hallberg, R. 2006 On methods for solving the oceanic equations of motion in generalized vertical coordinates. Ocean Model. 11, 224233.
Anderson, D. L. T. 1984 An advective mixed-layer model with applications to the diurnal cycle of the low-level East-African jet. Tellus, Ser. A 36, 278291.
Andrews, D. G. 1981 A note on potential energy density in a stratified compressible fluid. J. Fluid Mech. 107, 227236.
Arnold, V. I. 1965a Conditions for nonlinear stability of stationary plane curvilinear flows of ideal fluid. Dokl. Akad. Nauk SSSR 162, 975978.
Arnold, V. I. 1965b Variational principle for three-dimensional steady-state flows of an ideal fluid. Prikl. Mat. Mekh. 29, 846851.
Arnold, V. I. & Khesin, B. A. 1998 Topological Methods in Hydrodynamics. Springer.
Barth, J. A. 1994 Short-wavelength instabilities on coastal jets and fronts. J. Geophys. Res. 99, 1609516115.
Bleck, R., Rooth, C., Hu, D. & Smith, L. T. 1992 Salinity-driven thermocline transients in a wind- and thermohaline-forced isopycnic coordinate model of the North Atlantic. J. Phys. Oceanogr. 22, 14861505.
Bokhove, O. 2002 Balanced models in geophysical fluid dynamics: Hamiltonian formulation, constraints and formal stability. In Large-Scale Atmosphere-Ocean Dynamics 2: Geometric Methods and Models (ed. Norbury, J. & Roulstone, I.), pp. 164. Cambridge University Press.
Bouchut, F., Lambaerts, J., Lapeyre, G. & Zeitlin, V. 2009 Fronts and nonlinear waves in a simplified shallow-water model of the atmosphere with moisture and convection. Phys. Fluids 21, 116604.
Camassa, R., Holm, D. D. & Levermore, C. D. 1996 Long-time effects of bottom topography in shallow water. Physica D 98, 258286.
Carbonel, H. A. A. C. & Galeao, N. C. A. 2007 A stabilized finite element model for the hydrothermodynamical simulation of the Rio de Janeiro coastal ocean. Commun. Numer. Meth. Engng 23, 521534.
Charney, J. G. 1948 On the scale of atmospheric motions. Geof. Publ. 17, 317.
Charney, J. G. 1949 On a physical basis for numerical prediction of large-scale motions in the atmosphere. J. Atmos. Sci. 6, 372385.
Charney, J. G. & Flierl, G. R. 1981 Oceanic analogues of large-scale atmospheric motions. In Evolution of Physical Oceanography (ed. Warren, B. A. & Wunsch, C.), pp. 504549. Massachusetts Institute of Technology.
Charney, J. G. & Phillips, N. A. 1953 Numerical integration of the quasi-geostrophic equations for barotropic and simple baroclinic flows. J. Meteorol. 10, 7199.
Charney, J. G. & Stern, M. E. 1962 On the stability of internal baroclinic jets in a rotating atmosphere. J. Meteorol. 19, 159172.
Dellar, P. J. 2002 Hamiltonian and symmetric hyperbolic structures of shallow water magnetohydrodynamics. Phys. Plasmas 9, 11301136.
Dellar, P. J. 2003 Common Hamiltonian structure of the shallow water equations with horizontal temperature gradients and magnetic fields. Phys. Fluids 15, 292297.
Dellar, P. J. 2011 Variations on a beta-plane: derivation of non-traditional beta-plane equations from Hamilton’s principle on a sphere. J. Fluid Mech. 674, 174195.
Dellar, P. J. & Salmon, R. 2005 Shallow water equations with a complete Coriolis force and topography. Phys. Fluids 17, 106601.
Eckart, C. 1960 Variation principles of hydrodynamics. Phys. Fluids 3, 421427.
Eldevik, T. 2002 On frontal dynamics in two model oceans. J. Phys. Oceanogr. 32, 29152925.
Eliassen, A. & Kleinschmidt, E. 1957 Dynamical meteorology. Handbuch der Physik, vol. 48, pp. 1154. Springer.
Farrell, B. F. & Ioannou, P. J. 1993 Stochastic forcing of the linearized Navier–Stokes equations. Phys. Fluids A 5, 26002609.
Farrell, B. F. & Ioannou, P. J. 2003 Structural stability of turbulent jets. J. Atmos. Sci. 60, 21012118.
Farrell, B. F. & Ioannou, P. J. 2007 Structure and spacing of jets in barotropic turbulence. J. Atmos. Sci. 64, 36523665.
FRAM Group, 1991 An eddy-resolving model of the Southern Ocean. EOS, Trans. Amer. Geophys. Union 72, 169170.
Fukamachi, Y., McCreary, J. P. & Proehl, J. A. 1995 Instability of density fronts in layer and continuously stratified models. J. Geophys. Res. 100, 25592577.
Gierasch, P. J., Ingersoll, A. P., Banfield, D., Ewald, S. P., Helfenstein, P., Simon-Miller, A., Vasavada, A., Breneman, H. H., Senske, D. A. & Team, I. Galileo 2000 Observation of moist convection in Jupiter’s atmosphere. Nature 403, 628630.
Gill, A. E. 1982 Atmosphere Ocean Dynamics. Academic Press.
Gilman, P. A. 1967 Stability of baroclinic flows in a zonal magnetic field: Part I. J. Atmos. Sci. 24, 101118.
Gilman, P. A. 2000 Magnetohydrodynamic ‘shallow water’ equations for the solar tachocline. Astrophys. J. Lett. 544, 7982.
Goldstein, H. 1980 Classical Mechanics, 2nd edn. Addison-Wesley.
Green, A. E. & Naghdi, P. M. 1976 A derivation of equations for wave propagation in water of variable depth. J. Fluid Mech. 78, 237246.
Guillot, T. 2005 The interiors of giant planets: Models and outstanding questions. Annu. Rev. Earth Planet. Sci. 33, 493530.
Holliday, D. & McIntyre, M. E. 1981 On potential energy density in an incompressible, stratified fluid. J. Fluid Mech. 107, 221225.
Holm, D. D. 1986 Hamiltonian formulation of the baroclinic quasigeostrophic fluid equations. Phys. Fluids 29, 78.
Holm, D. D., Marsden, J. E., Ratiu, T. & Weinstein, A. 1985 Nonlinear stability of fluid and plasma equilibria. Phys. Rep. 123, 1116.
Holton, J. R. 1992 An Introduction to Dynamic Meteorology, 3rd edn. Academic Press.
Hoskins, B. J., McIntyre, M. E. & Robertson, A. W. 1985 On the use and significance of isentropic potential vorticity maps. Q. J. R. Meteorol. Soc. 111, 877946.
Ivchenko, V. O., Krupitsky, A. E., Kamenkovich, V. M. & Wells, N. C. 1999 Modelling the antarctic circumpolar current: a comparison of FRAM and equivalent barotropic model results. J. Mar. Res. 57, 2945.
Juckes, M. 1989 A shallow water model of the winter stratosphere. J. Atmos. Sci. 46, 29342956.
Killworth, P. D. 1992 An equivalent-barotropic mode in the fine resolution antarctic model. J. Phys. Oceanogr. 22, 13791387.
Killworth, P. D. & Hughes, C. W. 2002 The Antarctic Circumpolar Current as a free equivalent-barotropic jet. J. Mar. Res. 60, 1945.
Krupitsky, A., Kamenkovich, V. M., Naik, N. & Cane, M. A. 1996 A linear equivalent barotropic model of the Antarctic Circumpolar Current with realistic coastlines and bottom topography. J. Phys. Oceanogr. 26, 18031824.
Kuo, H. L. 1959 Finite-amplitude three-dimensional harmonic waves on the spherical Earth. J. Meteorol. 16, 524534.
LaCasce, J. H. & Isachsen, P. E. 2010 The linear models of the ACC. Prog. Oceanogr. 84, 139157.
Lambaerts, J., Lapeyre, G., Zeitlin, V. & Bouchut, F. 2011 Simplified two-layer models of precipitating atmosphere and their properties. Phys. Fluids 23, 046603.
Lavoie, R. L. 1972 A mesoscale numerical model of lake-effect storms. J. Atmos. Sci. 29, 10251040.
Leith, C. E. 1980 Nonlinear normal mode initialization and quasi-geostrophic theory. J. Atmos. Sci. 37, 958968.
Lighthill, J. 1978 Waves in Fluids. Cambridge University Press.
Longuet-Higgins, M. S. 1964 On group velocity and energy flux in planetary wave motions. Deep-Sea Res. 11, 3542.
Lorenz, E. N. 1955 Available potential energy and the maintenance of the general circulation. Tellus 7, 157167.
Majda, A. 2003 Introduction to PDEs and Waves for the Atmosphere and Ocean. American Mathematical Society.
Majda, A. & Wang, X. 2006 Nonlinear Dynamics and Statistical Theories for Basic Geophysical Flows. Cambridge University Press.
Marston, J. B., Conover, E. & Schneider, T. 2008 Statistics of an unstable barotropic jet from a cumulant expansion. J. Atmos. Sci. 65, 19551966.
McCreary, J. P., Fukamachi, Y. & Kundu, P. K. 1991 A numerical investigation of jets and eddies near an eastern ocean boundary. J. Geophys. Res. 96, 25152534.
McCreary, J. P. & Kundu, P. K. 1988 A numerical investigation of the Somali Current during the Southwest Monsoon. J. Marine Res. 46, 2558.
McCreary, J. P. & Yu, Z. 1992 Equatorial dynamics in a $2\frac{1}{2} $ -layer model. Prog. Oceanogr. 29, 61132.
McIntyre, M. E. & Shepherd, T. G. 1987 An exact local conservation theorem for finite-amplitude disturbances to non-parallel shear flows, with remarks on Hamiltonian structure and Arnol’d’s stability theorems. J. Fluid Mech. 181, 527565.
McWilliams, J. C. 1977 A note on a consistent quasigeostrophic model in a multiply connected domain. Dyn. Atmos. Oceans 1, 427441.
Miles, J. & Salmon, R. 1985 Weakly dispersive nonlinear gravity waves. J. Fluid Mech. 157, 519531.
Mohebalhojeh, A. R. & Dritschel, D. G. 2001 Hierarchies of balance conditions for the f-plane shallow-water equations. J. Atmos. Sci. 58, 24112426.
Morrison, P. J. 1982 Poisson brackets for fluids and plasmas. In Mathematical Methods in Hydrodynamics and Integrability in Dynamical Systems (ed. Tabor, M. & Treve, Y. M.), AIP Conference Proceedings, vol. 88. pp. 1346. American Institute of Physics.
Morrison, P. J. 1998 Hamiltonian description of the ideal fluid. Rev. Mod. Phys. 70, 467521.
Morrison, P. J. 2006 Hamiltonian fluid dynamics. In Encyclopedia of Mathematical Physics (ed. Francoise, J.-P., Naber, G. L. & Tsou, S. T.), vol. 2. pp. 593600. Elsevier.
Morrison, P. J. & Hazeltine, R. D. 1984 Hamiltonian formulation of reduced magnetohydrodynamics. Phys. Fluids 27, 886897.
Muraki, D. J., Snyder, C. & Rotunno, R. 1999 The next-order corrections to quasigeostrophic theory. J. Atmos. Sci. 56, 15471560.
Neumann, G. 1960 On the dynamical structure of the Gulf Stream as an equivalent-barotropic flow. J. Geophys. Res. 65, 239247.
Pedlosky, J. 1987 Geophysical Fluid Dynamics, 2nd edn. Springer.
Polvani, L. M., Waugh, D. W. & Plumb, R. A. 1995 On the subtropical edge of the stratospheric surf zone. J. Atmos. Sci. 52, 12881309.
Reinaud, J. N., Dritschel, D. G. & Koudella, C. R. 2003 The shape of vortices in quasi-geostrophic turbulence. J. Fluid Mech. 474, 175192.
Remmel, M. & Smith, L. 2009 New intermediate models for rotating shallow water and an investigation of the preference for anticyclones. J. Fluid Mech. 635, 321359.
Ripa, P. 1993 Conservation laws for primitive equations models with inhomogeneous layers. Geophys. Astrophys. Fluid Dyn. 70, 85111.
Ripa, P. 1995 On improving a one-layer ocean model with thermodynamics. J. Fluid Mech. 303, 169201.
Ripa, P. 1996a Linear waves in a one-layer ocean model with thermodynamics. J. Geophys. Res. 101, 12331245.
Ripa, P. 1996b Low frequency approximation of a vertically averaged ocean model with thermodynamics. Rev. Mex. Fís. 41, 117135.
Ripa, P. 1999 On the validity of layered models of ocean dynamics and thermodynamics with reduced vertical resolution. Dyn. Atmos. Oceans 29, 140.
Røed, L. P. 1997 Energy diagnostics in a $1\frac{1}{2} $ -layer, nonisopycnic model. J. Phys. Oceanogr. 27, 14721476.
Røed, L. P. & Shi, X. B. 1999 A numerical study of the dynamics and energetics of cool filaments, jets, and eddies off the Iberian Peninsula. J. Geophys. Res. 104, 29,817–29,841.
Salby, M. L. 1989 Deep circulations under simple classes of stratification. Tellus A 41, 4865.
Salmon, R. 1982 The shape of the main thermocline. J. Phys. Oceanogr. 12, 14581479.
Salmon, R. 1983 Practical use of Hamilton’s principle. J. Fluid Mech. 132, 431444.
Salmon, R. 1988a Hamiltonian fluid mechanics. Ann. Rev. Fluid Mech. 20, 225256.
Salmon, R. 1988b Semigeostrophic theory as a Dirac-bracket projection. J. Fluid Mech. 196, 345358.
Salmon, R. 1998 Lectures on Geophysical Fluid Dynamics. Oxford University.
Schopf, P. S. & Cane, M. A. 1983 On equatorial dynamics, mixed layer physics and sea-surface temperature. J. Phys. Oceanogr. 13, 917935.
Schubert, W. H., Taft, R. K. & Silvers, L. G. 2009 Shallow water quasi-geostrophic theory on the sphere. J. Adv. Model. Earth Syst. 1, 2.
Scott, R. K. & Polvani, L. M. 2008 Equatorial superrotation in shallow atmospheres. Geophys. Res. Lett. 35, L24202.
Seliger, R. L. & Whitham, G. B. 1968 Variational principles in continuum mechanics. Proc. R. Soc. Lond. A 305, 125.
Shepherd, T. G. 1990 Symmetries, conservation laws, and Hamiltonian structure in geophysical fluid dynamics. Adv. Geophys. 32, 287338.
Shepherd, T. G. 1993 A unified theory of available potential energy. Atmos.-Ocean 31, 126.
Shi, X. B. & Roed, L. P. 1999 Frontal instabilities in a two-layer, primitive equation ocean model. J. Phys. Oceanogr. 29, 948968.
Srinivasan, K. & Young, W. R. 2012 Zonostrophic instability. J. Atmos. Sci. 69, 16331656.
Stewart, A. L. & Dellar, P. J. 2010 Multilayer shallow water equations with complete Coriolis force. Part 1. Derivation on a non-traditional beta-plane. J. Fluid Mech. 651, 387413.
Stone, P. H. 1966 On non-geostrophic baroclinic stability. J. Atmos. Sci. 23, 390400.
Su, C. H. & Gardner, C. S. 1969 Korteweg–de Vries equation and generalizations III. Derivation of the Korteweg–de Vries equation and Burgers equation. J. Math. Phys. 10, 536539.
Tailleux, R. 2013 Available potential energy and exergy in stratified fluids. Annu. Rev. Fluid Mech. 45, 3558.
Tassi, E., Chandre, C. & Morrison, P. J. 2009 Hamiltonian derivation of the Charney–Hasegawa–Mima equation. Phys. Plasmas 16, 082301.
Theiss, J. & Mohebalhojeh, A. R. 2009 The equatorial counterpart of the quasi-geostrophic model. J. Fluid Mech. 637, 327356.
Thuburn, J. & Lagneau, V. 1999 Eulerian mean, contour integral, and finite-amplitude wave activity diagnostics applied to a single-layer model of the winter stratosphere. J. Atmos. Sci. 56, 689710.
Tobias, S. M., Dagon, K. & Marston, J. B. 2011 Astrophysical fluid dynamics via direct statistical simulation. Astrophys. J. 727, 127.
Vallis, G. K. 2006 Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press.
Van Kampen, N. G. 1985 Elimination of fast variables. Phys. Rep. 124, 69160.
Verkley, W. T. M. 2009 A balanced approximation of the one-layer shallow-water equations on a sphere. J. Atmos. Sci. 66, 17351748.
Viúdez, Á & Dritschel, D. G. 2004 Optimal potential vorticity balance of geophysical flows. J. Fluid Mech. 521, 343352.
Warn, T., Bokhove, O., Shepherd, T. G. & Vallis, G. K. 1995 Rossby number expansions, slaving principles, and balance dynamics. Q. J. R. Meteorol. Soc. 121, 723739.
Weinstein, A. 1983 Hamiltonian structure for drift waves and geostrophic flow. Phys. Fluids 26, 388390.
White, A. A. 2002 A view of the equations of meteorological dynamics and various approximations. In Large-Scale Atmosphere-Ocean Dynamics 1: Analytical Methods and Numerical Models (ed. Norbury, J. & Roulstone, I.), pp. 1100. Cambridge University Press.
Winters, K. B., Lombard, P. N., Riley, J. J. & D’Asaro, E. A. 1995 Available potential energy and mixing in density-stratified fluids. J. Fluid Mech. 289, 115128.
Wu, T. Y. 1981 Long waves in ocean and coastal waters. J. Eng. Mech. Div. (Amer. Soc. Civil Eng.) 107, 501522.
Young, W. R. 1994 The subinertial mixed layer approximation. J. Phys. Oceanogr. 24, 18121826.
Young, W. R. & Chen, L. 1995 Baroclinic instability and thermohaline gradient alignment in the mixed layer. J. Phys. Oceanogr. 25, 31723185.
Zeitlin, V. 2007 Nonlinear Dynamics of Rotating Shallow Water: Methods and Advances. Elsevier.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 57 *
Loading metrics...

Abstract views

Total abstract views: 252 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd March 2018. This data will be updated every 24 hours.