Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-25T08:23:17.970Z Has data issue: false hasContentIssue false

The role of bulk viscosity on the decay of compressible, homogeneous, isotropic turbulence

Published online by Cambridge University Press:  08 November 2017

Shaowu Pan
Affiliation:
Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
Eric Johnsen
Affiliation:
Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA

Abstract

While Stokes’ hypothesis of neglecting bulk viscous effects is exact for monatomic gases and unlikely to strongly affect the dynamics of fluids whose bulk-to-shear viscosity ratio is small and/or of weakly compressible turbulence, it is unclear to what extent this assumption holds for compressible, turbulent flows of gases whose bulk viscosity is orders of magnitude larger than their shear viscosities (e.g. $\text{CO}_{2}$). Our objective is to understand the mechanisms by which bulk viscosity and the associated phenomena affect moderately compressible turbulence, in particular energy transfer and dissipation. Using direct numerical simulations of the compressible Navier–Stokes equations, we study the decay of compressible, homogeneous, isotropic turbulence for ratios of bulk-to-shear viscosity ranging from 0 to 1000. Our simulations demonstrate that bulk viscosity increases the decay rate of turbulent kinetic energy; whereas enstrophy exhibits little sensitivity to bulk viscosity, dilatation is reduced by over two orders of magnitude within the first two eddy-turnover times. Via a Helmholtz decomposition of the flow, we determine that the primary action of bulk viscosity is to damp the dilatational velocity fluctuations and reduce dilatational–solenoidal exchanges, as well as pressure–dilatation coupling. In short, bulk viscosity renders compressible turbulence incompressible by reducing energy transfer between translational and internal degrees of freedom. Our results indicate that for gases whose bulk viscosity is of the order of their shear viscosity (e.g. hydrogen) the turbulence is not significantly affected by bulk viscous dissipation, in which case neglecting bulk viscosity is acceptable in practice. However, in problems involving compressible, turbulent flows of gases like $\text{CO}_{2}$ whose bulk viscosities are thousands of times greater than their shear viscosities, bulk viscosity cannot be ignored.

Type
Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bahmani, F. & Cramer, M. S. 2014 Suppression of shock-induced separation in fluids having large bulk viscosities. J. Fluid Mech. 756, R2.CrossRefGoogle Scholar
Batchelor, G. K. 1968 An Introduction to Fluid Mechanics. Cambridge University Press.Google Scholar
Billet, G., Giovangigli, V. & de Gassowski, G. 2008 Impact of volume viscosity on a shock-hydrogen-bubble interaction. Combust. Theor. Model. 12, 221248.CrossRefGoogle Scholar
Blaisdell, G. A.1991. Numerical simulation of compressible homogeneous turbulence. PhD thesis, Stanford University, CA.Google Scholar
Chen, S., Xia, Z., Wang, J. & Yang, Y. 2015 Recent progress in compressible turbulence. Acta Mechanica Sin. 31 (3), 275291.CrossRefGoogle Scholar
Cramer, M. S. 2012 Numerical estimates for the bulk viscosity of ideal gases. Phys. Fluids 24, 066102.Google Scholar
Cramer, M. S. & Bahmani, F. 2014 Effect of large bulk viscosity on large-Reynolds-number flows. J. Fluid Mech. 751, 142163.Google Scholar
Donzis, D. A. & Maqui, A. F. 2016 Statistically steady states of forced isotropic turbulence in thermal equilibrium and non-equilibrium. J. Fluid Mech. 797, 181200.Google Scholar
Ducros, F., Laporte, F., Souleres, T., Guinot, V., Moinat, P. & Caruelle, B. 2000 High-order fluxes for conservative skew-symmetric-like schemes in structured meshes: application to compressible flows. J. Comput. Phys. 161, 114139.Google Scholar
Emanuel, G. 1990 Bulk viscosity of a dilute polyatomic gas. Phys. Fluids (A/Fluid) 2, 2252.CrossRefGoogle Scholar
Emanuel, G. 1992 Effect of bulk viscosity on a hypersonic boundary layer. Phys. Fluids (A/Fluid) 4 (3), 491.Google Scholar
Ern, A. & Giovangigli, V. 1996 Optimized transport algorithms for flame codes. Combust. Sci. Technol. 118, 387395.CrossRefGoogle Scholar
Feiereisen, W. J.1981. Numerical simulation of a compressible homogeneous, turbulent shear flow. PhD thesis, Stanford University, CA.Google Scholar
Fru, G., Janiga, G. & Thévenin, D. 2011 Direct numerical simulations of the impact of high turbulence intensities and volume viscosity on premixed methane flames. J. Combust. 2011, 112.Google Scholar
Gatski, T. B. & Bonnet, J. P. 2013 Compressibility, Turbulence and High Speed Flow. Academic Press.Google Scholar
Giovangigli, V. 1999 Multicomponent Glow Modeling. Birkhauser.Google Scholar
Gonzalez, H. & Emanuel, G. 1993 Effect of bulk viscosity on Couette flow. Phys. Fluids (A/Fluid) 5, 1267.Google Scholar
Gottlieb, S., Shu, C. W. & Tadmor, E. 2001 Strong stability-preserving high-order time discretization methods. SIAM Rev. 43, 89112.Google Scholar
Graves, R. E. & Argrow, B. M. 1999 Bulk viscosity: past to present. J. Thermophys. Heat Tr. 13, 337342.Google Scholar
Hirschfelder, J. O., Curtiss, C. F., Bird, R. B. & Mayer, M. G. 1954 Molecular Theory of Gases and Liquids. John Wiley & Sons.Google Scholar
Huang, P. G., Coleman, G. N. & Bradshaw, P. 1995 Compressible turbulent channel flows: DNS results and modelling. J. Fluid Mech. 305, 185218.Google Scholar
Johnsen, E., Larsson, J., Bhagatwala, A. V., Cabot, W. H., Moin, P., Olson, B. J., Rawat, P. S., Shankar, S. K., Sjögreen, B., Yee, H. C. et al. 2010 Assessment of high-resolution methods for numerical simulations of compressible turbulence with shock waves. J. Comput. Phys. 229, 12131237.Google Scholar
Kida, S. & Orszag, S. A. 1992 Energy and spectral dynamics in decaying compressible turbulence. J. Sci. Comput. 7, 134.Google Scholar
Konyukhov, V. K., Korogod, V. V. & Tikhonov, V. I. 1969 A phase method of measuring the vibrational relaxation time for CO2 molecules. J. Appl. Spectrosc. 10, 174176.Google Scholar
Kovasznay, L. S. G. 1988 Turbulence in supersonic flow. J. Aero. Sci. 20, 657674.Google Scholar
Kritsuk, A. G., Norman, M. L., Padoan, P. & Wagner, R. 2007 The statistics of supersonic isothermal turbulence. Astrophys. J. 665, 416.Google Scholar
Kumar, G., Girimaji, S. S. & Kerimo, J. 2013 WENO-enhanced gas-kinetic scheme for direct simulations of compressible transition and turbulence. J. Comput. Phys. 234, 499523.Google Scholar
Landau, L. D. & Lifshitz, E. M. 1987 Fluid Mechanics. Butterworth Heinemann.Google Scholar
Larsson, J. & Lele, S. K. 2009 Direct numerical simulation of canonical shock/turbulence interaction. Phys. Fluids 21, 126101.Google Scholar
Lee, K., Girimaji, S. S. & Kerimo, J. 2009 Effect of compressibility on turbulent velocity gradients and small-scale structure. J. Turbul. 10, 118.Google Scholar
Lee, S., Lele, S. K. & Moin, P. 1991 Eddy shocklets in decaying compressible turbulence. Phys. Fluids (A/Fluid) 3, 657664.Google Scholar
Lele, S. K. 1994 Compressibility effects on turbulence. Annu. Rev. Fluid Mech. 26, 211254.CrossRefGoogle Scholar
Liao, W., Peng, Y. & Luo, L. S. 2009 Gas-kinetic schemes for direct numerical simulations of compressible homogeneous turbulence. Phys. Rev. E 80, 046702.Google Scholar
Liao, W., Peng, Y. & Luo, L. S. 2010 Effects of multitemperature nonequilibrium on compressible homogeneous turbulence. Phys. Rev. E 81, 046704.Google Scholar
Livescu, D., Jaberi, F. A. & Madnia, C. K. 2002 The effects of heat release on the energy exchange in reacting turbulent shear flow. J. Fluid Mech. 450, 3566.Google Scholar
Meador, W. E., Miner, G. A. & Townsend, L. W. 1996 Bulk viscosity as a relaxation parameter: fact or fiction? Phys. Fluids 8, 258261.CrossRefGoogle Scholar
Miura, H. & Kida, S. 1995 Acoustic energy exchange in compressible turbulence. Phys. Fluids 7, 1732.Google Scholar
Moin, P. & Mahesh, K. 1998 Direct numerical simulation: a tool in turbulence research. Annu. Rev. Fluid Mech. 30, 539578.Google Scholar
Movahed, P. & Johnsen, E. 2015 The mixing region in freely decaying variable-density turbulence. J. Fluid Mech. 772, 386426.CrossRefGoogle Scholar
Papamoschou, D. & Roshko, A. 1988 The compressible turbulent shear layer: an experimental study. J. Fluid Mech. 197, 453477.Google Scholar
Pirozzoli, S. 2010 Generalized conservative approximations of split convective derivative operators. J. Comput. Phys. 229, 71807190.Google Scholar
Pirozzoli, S. & Grasso, F. 2004 Direct numerical simulations of isotropic compressible turbulence: influence of compressibility on dynamics and structures. Phys. Fluids 16, 43864407.Google Scholar
Pirozzoli, S., Grasso, F. & Gatski, T. B. 2004 Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at m = 2. 25. Phys. Fluids 16, 530545.CrossRefGoogle Scholar
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.Google Scholar
Ristorcelli, J. R. 1997 A pseudo-sound constitutive relationship for the dilatational covariances in compressible turbulence. J. Fluid Mech. 347, 3770.Google Scholar
Ristorcelli, J. R. & Blaisdell, G. A. 1997 Consistent initial conditions for the DNS of compressible turbulence. Phys. Fluids 9, 46.Google Scholar
Rogallo, R. S.1981. Numerical experiments in homogeneous turbulence. Tech. Rep. 81315. NASA.Google Scholar
Samtaney, R., Pullin, D. I. & Kosovic, B. 2001 Direct numerical simulation of decaying compressible turbulence and shocklet statistics. Phys. Fluids 13, 14151430.Google Scholar
Sarkar, S. 1992 The pressure-dilatation correlation in compressible flows. Phys. Fluids 4, 26742682.Google Scholar
Sarkar, S. 1995 The stabilizing effect of compressibility in turbulent shear flow. J. Fluid Mech. 282, 163186.Google Scholar
Sarkar, S., Erlebacher, G., Hussaini, M. Y. & Kreiss, H. O. 1991 The analysis and modelling of dilatational terms in compressible turbulence. J. Fluid Mech. 227, 473493.Google Scholar
Stokes, G. G. 1851 On the effect of the internal friction of fluids on the motion of pendulums. Trans. Camb. Phil. Soc. 9, 8.Google Scholar
Tisza, L. 1942 Supersonic absorption and Stokes’ viscosity relation. Phys. Rev. 61, 531.Google Scholar
Towns, J., Cockerill, T., Dahan, M., Foster, I., Gaither, K., Grimshaw, A., Hazlewood, V., Lathrop, S., Lifka, D., Peterson, G. D. et al. 2014 Xsede: accelerating scientific discovery. Comput. Sci. Eng. 16, 6274.CrossRefGoogle Scholar
Vincenti, W. G. & Kruger, C. H. 1965 Introduction to Physical Gas Dynamics. John Wiley & Sons.Google Scholar
Vreman, A. W., Sandham, N. D. & Luo, K. H. 1996 Compressible mixing layer growth rate and turbulence characteristics. J. Fluid Mech. 320, 235258.Google Scholar
Wang, J., Shi, Y., Wang, L. P., Xiao, Z., He, X. T. & Chen, S. 2012 Effect of compressibility on the small-scale structures in isotropic turbulence. J. Fluid Mech. 713, 588631.Google Scholar
Yeung, P. K. & Pope, S. B. 1989 Lagrangian statistics from direct numerical simulations of isotropic turbulence. J. Fluid Mech. 207, 531586.CrossRefGoogle Scholar