Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-30T03:35:02.673Z Has data issue: false hasContentIssue false

Shock-induced aerobreakup of a polymeric droplet

Published online by Cambridge University Press:  08 June 2023

Navin Kumar Chandra
Affiliation:
Department of Mechanical Engineering, Indian Institute of Science, Bangalore 560012, India
Shubham Sharma
Affiliation:
Department of Mechanical Engineering, Indian Institute of Science, Bangalore 560012, India
Saptarshi Basu*
Affiliation:
Department of Mechanical Engineering, Indian Institute of Science, Bangalore 560012, India Interdisciplinary Centre for Energy Research, Indian Institute of Science, Bangalore 560012, India
Aloke Kumar*
Affiliation:
Department of Mechanical Engineering, Indian Institute of Science, Bangalore 560012, India
*
Email addresses for correspondence: sbasu@iisc.ac.in, alokekumar@iisc.ac.in
Email addresses for correspondence: sbasu@iisc.ac.in, alokekumar@iisc.ac.in

Abstract

Droplet atomization through aerobreakup is omnipresent in various natural and industrial processes. Atomization of Newtonian droplets is a well-studied area; however, non-Newtonian droplets have received less attention despite their being frequently encountered. By subjecting polymeric droplets of different concentrations to the induced airflow behind a moving shock wave, we explore the role of elasticity in modulating the aerobreakup of viscoelastic droplets. Three distinct modes of aerobreakup are identified for a wide range of Weber number $({\sim }10^2\unicode{x2013}10^4)$ and elasticity number $({\sim }10^{-4}\unicode{x2013}10^2)$ variation: these modes are vibrational, shear-induced entrainment and catastrophic breakup modes. Each mode is described as a three-stage process. Stage I is droplet deformation, stage II is the appearance and growth of hydrodynamic instabilities and stage III is the evolution of liquid mass morphology. It is observed that elasticity plays an insignificant role in the first two stages but a dominant role in the final stage. The results are described with the support of adequate mathematical analysis.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arcoumanis, C., Khezzar, L., Whitelaw, D.S. & Warren, B.C.H. 1994 Breakup of Newtonian and non-Newtonian fluids in air jets. Exp. Fluids 17 (6), 405414.CrossRefGoogle Scholar
Awasthi, M.K. 2021 Kelvin–Helmholtz instability of viscoelastic liquid-viscous gas interface with heat and mass transfer. Intl J. Thermal Sci. 161, 106710.CrossRefGoogle Scholar
Bach, G.G. & Lee, J.H.S. 1970 An analytical solution for blast waves. AIAA J. 8 (2), 271275.CrossRefGoogle Scholar
Bhat, P.P., Appathurai, S., Harris, M.T., Pasquali, M., McKinley, G.H. & Basaran, O.A. 2010 Formation of beads-on-a-string structures during break-up of viscoelastic filaments. Nat. Phys. 6 (8), 625631.CrossRefGoogle Scholar
Bousfield, D.W., Keunings, R., Marrucci, G. & Denn, M.M. 1986 Nonlinear analysis of the surface tension driven breakup of viscoelastic filaments. J. Non-Newtonian Fluid Mech. 21 (1), 7997.CrossRefGoogle Scholar
Cervantes-Martínez, C.V., Medina-Torres, L., González-Laredo, R.F., Calderas, F., Sánchez-Olivares, G., Herrera-Valencia, E.E., Infante, J.A.G., Rocha-Guzman, N.E. & Rodriguez-Ramirez, J. 2014 Study of spray drying of the Aloe vera mucilage (Aloe vera barbadensis Miller) as a function of its rheological properties. LWT-Food Sci. Technol. 55 (2), 426435.CrossRefGoogle Scholar
Chen, Y., Wagner, J.L., Farias, P.A., DeMauro, E.P. & Guildenbecher, D.R. 2018 Galinstan liquid metal breakup and droplet formation in a shock-induced cross-flow. Intl J. Multiphase Flow 106, 147163.CrossRefGoogle Scholar
Clasen, C., Eggers, J., Fontelos, M.A., Li, J. & McKinley, G.H. 2006 The beads-on-string structure of viscoelastic threads. J. Fluid Mech. 556, 283308.CrossRefGoogle Scholar
Dasgupta, D., Sharma, S., Nath, S. & Bhanja, D. 2021 Effects of elasticity number and time constant ratio on breakup and droplet formation of viscoelastic planar liquid sheet co-flowing with gases of equal velocities. J. Fluid Mech. 920, A7.CrossRefGoogle Scholar
Fedotov-Gefen, A., Efimov, S., Gilburd, L., Gleizer, S., Bazalitsky, G., Gurovich, V.T. & Krasik, Y.E. 2010 Extreme water state produced by underwater wire-array electrical explosion. Appl. Phys. Lett. 96 (22), 221502.CrossRefGoogle Scholar
Gelfand, B.E. 1996 Droplet breakup phenomena in flows with velocity lag. Prog. Energy Combust. Sci. 22 (3), 201265.CrossRefGoogle Scholar
Goren, S.L. & Gottlieb, M. 1982 Surface-tension-driven breakup of viscoelastic liquid threads. J. Fluid Mech. 120, 245266.CrossRefGoogle Scholar
Guildenbecher, D.R., López-Rivera, C. & Sojka, P.E. 2009 Secondary atomization. Exp. Fluids 46 (3), 371402.CrossRefGoogle Scholar
Guildenbecher, D.R., López-Rivera, C. & Sojka, P.E. 2011 Droplet deformation and breakup. In Handbook of Atomization and Sprays (ed. N. Ashgriz), pp. 145–156. Springer.CrossRefGoogle Scholar
Hoyt, J.W., Taylor, J.J. & Altman, R.L. 1980 Drag reduction–jet breakup correlation with kerosene-based additives. J. Rheol. 24 (5), 685699.CrossRefGoogle Scholar
Igra, O., Falcovitz, J., Houas, L. & Jourdan, G. 2013 Review of methods to attenuate shock/blast waves. Prog. Aerosp. Sci. 58, 135.CrossRefGoogle Scholar
Jackiw, I.M. & Ashgriz, N. 2021 On aerodynamic droplet breakup. J. Fluid Mech. 913, A33.CrossRefGoogle Scholar
Jain, M., Prakash, R.S., Tomar, G. & Ravikrishna, R.V. 2015 Secondary breakup of a drop at moderate weber numbers. Proc. R. Soc. A 471 (2177), 20140930.CrossRefGoogle Scholar
Joseph, D.D., Beavers, G.S. & Funada, T. 2002 Rayleigh–Taylor instability of viscoelastic drops at high Weber numbers. J. Fluid Mech. 453, 109132.CrossRefGoogle Scholar
Joseph, D.D., Belanger, J. & Beavers, G.S. 1999 Breakup of a liquid drop suddenly exposed to a high-speed airstream. Intl J. Multiphase Flow 25 (6–7), 12631303.CrossRefGoogle Scholar
Larson, R.G. 2013 Constitutive Equations for Polymer Melts and Solutions: Butterworths Series in Chemical Engineering. Butterworth-Heinemann.Google Scholar
Liu, Z., Brenn, G. & Durst, F. 1998 Linear analysis of the instability of two-dimensional non-Newtonian liquid sheets. J. Non-Newtonian Fluid Mech. 78 (2–3), 133166.CrossRefGoogle Scholar
Liverts, M., Ram, O., Sadot, O., Apazidis, N. & Ben-Dor, G. 2015 Mitigation of exploding-wire-generated blast-waves by aqueous foam. Phys. Fluids 27 (7), 076103.CrossRefGoogle Scholar
Malkin, A.Y., Arinstein, A. & Kulichikhin, V.G. 2014 Polymer extension flows and instabilities. Prog. Polym. Sci. 39 (5), 959978.CrossRefGoogle Scholar
Mansoor, M.M. & George, J. 2023 Investigation of the Richtmyer–Meshkov instability using digital holography in the context of catastrophic aerobreakup. Exp. Fluids 64 (40), 11141432.CrossRefGoogle Scholar
Marmottant, P. & Villermaux, E. 2004 On spray formation. J. Fluid Mech. 498, 73111.CrossRefGoogle Scholar
Marzo, A., Barnes, A. & Drinkwater, B.W. 2017 Tinylev: a multi-emitter single-axis acoustic levitator. Rev. Sci. Instrum. 88 (8), 085105.CrossRefGoogle ScholarPubMed
Matta, J.E. & Tytus, R.P. 1982 Viscoelastic breakup in a high velocity airstream. J. Appl. Polym. Sci. 27 (2), 397405.CrossRefGoogle Scholar
Matta, J.E., Tytus, R.P. & Harris, J.L. 1983 Aerodynamic atomization of polymeric solutions. Chem. Engng Commun. 19 (4–6), 191204.CrossRefGoogle Scholar
Mitkin, V.V. & Theofanous, T.G. 2017 The physics of aerobreakup. IV. Strain-thickening liquids. Phys. Fluids 29 (12), 122101.CrossRefGoogle Scholar
Ng, C.-L. & Theofanous, T.G. 2008 Modes of aero-breakup with visco-elastic liquids. In AIP Conference Proceedings (ed. A. Co, L.G. Leal, R.H. Colby & A.J. Giacomin), vol. 1027, pp. 183–185. American Institute of Physics.CrossRefGoogle Scholar
Nicholls, J.A. & Ranger, A.A. 1969 Aerodynamic shattering of liquid drops. AIAA J. 7 (2), 285290.CrossRefGoogle Scholar
Padrino, J.C. & Joseph, D.D. 2006 Shear instability of a planar liquid jet immersed in a high speed gas stream. PhD thesis, Master's thesis, University of Minnesota, Minneapolis, MN.Google Scholar
Padwal, M.B., Natan, B. & Mishra, D.P. 2021 Gel propellants. Prog. Energy Combust. Sci. 83, 100885.CrossRefGoogle Scholar
Pilch, M. & Erdman, C.A. 1987 Use of breakup time data and velocity history data to predict the maximum size of stable fragments for acceleration-induced breakup of a liquid drop. Intl J. Multiphase Flow 13 (6), 741757.CrossRefGoogle Scholar
Pontalier, Q., Loiseau, J., Goroshin, S. & Frost, D.L. 2018 Experimental investigation of blast mitigation and particle–blast interaction during the explosive dispersal of particles and liquids. Shock Waves 28 (3), 489511.CrossRefGoogle Scholar
Ram, O. & Sadot, O. 2012 Implementation of the exploding wire technique to study blast-wave–structure interaction. Exp. Fluids 53 (5), 13351345.CrossRefGoogle Scholar
Ruo, A.-C., Chen, F., Chung, C.-A. & Chang, M.-H. 2011 Three-dimensional response of unrelaxed tension to instability of viscoelastic jets. J. Fluid Mech. 682, 558576.CrossRefGoogle Scholar
Scharfman, B.E., Techet, A.H., Bush, J.W.M. & Bourouiba, L. 2016 Visualization of sneeze ejecta: steps of fluid fragmentation leading to respiratory droplets. Exp. Fluids 57 (24), doi:10.1007/s00348-015-2078-4.CrossRefGoogle ScholarPubMed
Sembian, S., Liverts, M. & Apazidis, N. 2016 a Attenuation of strong external blast by foam barriers. Phys. Fluids 28 (9), 096105.CrossRefGoogle Scholar
Sembian, S., Liverts, M., Tillmark, N. & Apazidis, N. 2016 b Plane shock wave interaction with a cylindrical water column. Phys. Fluids 28 (5), 056102.CrossRefGoogle Scholar
Sharma, S., Chandra, N.K., Basu, S. & Kumar, A. 2022 Advances in droplet aerobreakup. Eur. Phys. J. Spec. Top. doi:10.1140/epjs/s11734-022-00653-z.Google Scholar
Sharma, S., Pinto, R., Saha, A., Chaudhuri, S. & Basu, S. 2021 a On secondary atomization and blockage of surrogate cough droplets in single-and multilayer face masks. Sci. Adv. 7 (10), eabf0452.CrossRefGoogle ScholarPubMed
Sharma, S., Rao, S.J., Chandra, N.K., Kumar, A., Basu, S. & Tropea, C. 2023 Depth from defocus technique applied to unsteady shock-drop secondary atomization. Exp. Fluids 64 (4), 65.CrossRefGoogle Scholar
Sharma, S., Singh, A.P. & Basu, S. 2021 b On the dynamics of vortex–droplet co-axial interaction: insights into droplet and vortex dynamics. J. Fluid Mech. 918, A37.CrossRefGoogle Scholar
Sharma, S., Singh, A.P., Rao, S.S., Kumar, A. & Basu, S. 2021 c Shock induced aerobreakup of a droplet. J. Fluid Mech. 929, A27.CrossRefGoogle Scholar
Sor, S. & García-Magariño, A. 2015 Modeling of droplet deformation near the leading edge of an airfoil. J. Aircraft 52 (6), 18381846.CrossRefGoogle Scholar
Supponen, O., Akimura, T., Minami, T., Nakajima, T., Uehara, S., Ohtani, K., Kaneko, T., Farhat, M. & Sato, T. 2018 Jetting from cavitation bubbles due to multiple shockwaves. Appl. Phys. Lett. 113 (19), 193703.CrossRefGoogle Scholar
Theofanous, T.G. 2011 Aerobreakup of newtonian and viscoelastic liquids. Annu. Rev. Fluid Mech. 43, 661690.CrossRefGoogle Scholar
Theofanous, T.G. & Li, G.J. 2008 On the physics of aerobreakup. Phys. Fluids 20 (5), 052103.CrossRefGoogle Scholar
Theofanous, T.G., Mitkin, V.V. & Ng, C.L. 2013 The physics of aerobreakup. III. Viscoelastic liquids. Phys. Fluids 25 (3), 032101.CrossRefGoogle Scholar
Thompson, J.C. & Rothstein, J.P. 2007 The atomization of viscoelastic fluids in flat-fan and hollow-cone spray nozzles. J. Non-Newtonian Fluid Mech. 147 (1–2), 1122.CrossRefGoogle Scholar
Vadivukkarasan, M. & Panchagnula, M.V. 2016 Helical modes in combined Rayleigh–Taylor and Kelvin–Helmholtz instability of a cylindrical interface. Intl J. Spray Combust. Dyn. 8 (4), 219234.CrossRefGoogle Scholar
Vadivukkarasan, M. & Panchagnula, M.V. 2017 Combined Rayleigh–Taylor and Kelvin–Helmholtz instabilities on an annular liquid sheet. J. Fluid Mech. 812, 152177.CrossRefGoogle Scholar
Varma, S.C., Rajput, A.S. & Kumar, A. 2022 Rheocoalescence: relaxation time through coalescence of droplets. Macromolecules 55 (14), 6031–6039.Google Scholar
Varma, S.C., Saha, A. & Kumar, A. 2021 Coalescence of polymeric sessile drops on a partially wettable substrate. Phys. Fluids 33 (12), 123101.CrossRefGoogle Scholar
Villermaux, E. & Bossa, B. 2009 Single-drop fragmentation determines size distribution of raindrops. Nat. Phys. 5 (9), 697702.CrossRefGoogle Scholar
Wang, C., Yang, L.-J., Xie, L. & Chen, P.-M. 2015 Weakly nonlinear instability of planar viscoelastic sheets. Phys. Fluids 27 (1), 013103.CrossRefGoogle Scholar
Wilcox, J.D., June, R.K., Brown, H.A., Jr. & Kelley, R.C., Jr. 1961 The retardation of drop breakup in high-velocity airstreams by polymeric modifiers. J. Appl. Polym. Sci. 5 (13), 16.CrossRefGoogle Scholar
Xie, L., Yang, L.-J., Fu, Q.-F. & Qin, L.-Z. 2016 Effects of unrelaxed stress tension on the weakly nonlinear instability of viscoelastic sheets. Phys. Fluids 28 (10), 104104.CrossRefGoogle Scholar
Yang, L.-J., Tong, M.-X. & Fu, Q.-F. 2013 Instability of viscoelastic annular liquid sheets subjected to unrelaxed axial elastic tension. J. Non-Newtonian Fluid Mech. 198, 3138.CrossRefGoogle Scholar
Zhao, H., Hou, Y.-B., Liu, H.-F., Tian, X.-S., Xu, J.-L., Li, W.-F., Liu, Y., Wu, F.-Y., Zhang, J. & Lin, K.-F. 2014 Influence of rheological properties on air-blast atomization of coal water slurry. J. Non-Newtonian Fluid Mech. 211, 115.CrossRefGoogle Scholar
Zhao, H., Wu, Z.-W., Li, W.-F., Xu, J.-L. & Liu, H.-F. 2018 Transition weber number between surfactant-laden drop bag breakup and shear breakup of secondary atomization. Fuel 221, 138143.CrossRefGoogle Scholar

Kumar Chandra et al. Supplementary Movie 1

Vibrational breakup mode.

Download Kumar Chandra et al. Supplementary Movie 1(Video)
Video 30.2 MB

Kumar Chandra et al. Supplementary Movie 2

SIE breakup mode.

Download Kumar Chandra et al. Supplementary Movie 2(Video)
Video 15.4 MB

Kumar Chandra et al. Supplementary Movie 3

Catastrophic breakup mode.

Download Kumar Chandra et al. Supplementary Movie 3(Video)
Video 7.4 MB

Kumar Chandra et al. Supplementary Movie 4

The three stages of droplet breakup.

Download Kumar Chandra et al. Supplementary Movie 4(Video)
Video 17.8 MB