Skip to main content
×
×
Home

Steady water waves with vorticity: spatial Hamiltonian structure

  • Vladimir Kozlov (a1) and Nikolay Kuznetsov (a2)
Abstract

Spatial dynamical systems are obtained for two-dimensional steady gravity waves with vorticity on water of finite depth. These systems have Hamiltonian structure and Hamiltonian is essentially the flow–force invariant.

Copyright
Corresponding author
Email address for correspondence: nikolay.g.kuznetsov@gmail.com
References
Hide All
Baesens, C. & MacKay, R. S. 1992 Uniformly travelling water waves from a dynamical systems viewpoint: some insights into bifurcations from Stokes’ family. J. Fluid Mech. 241, 333347.
Benjamin, T. B. 1971 A unified theory of conjugate flows. Phil. Trans. R. Soc. Lond. A 269, 587643.
Benjamin, T. B. 1984 Impulse, flow force and variational principles. IMA J. Appl. Maths 32, 368.
Benjamin, T. B. 1995 Verification of the Benjamin–Lighthill conjecture about steady water waves. J. Fluid Mech. 295, 337356.
Benjamin, T. B. & Lighthill, M. J. 1954 On cnoidal waves and bores. Proc. R. Soc. Lond. A 224, 448460.
Bridges, T. J. 1994 Hamiltonian spatial structure for three-dimensional water waves in a moving frame of reference. J. Nonlinear Sci. 4, 221251.
Constantin, A., Sattinger, D. & Strauss, W. 2006 Variational formulations for steady water waves with vorticity. J. Fluid Mech. 548, 151163.
Constantin, A. & Strauss, W. 2004 Exact steady periodic water waves with vorticity. Commun. Pure Appl. Maths 57, 481527.
Constantin, A. & Strauss, W. 2007 Stability properties of steady water waves with vorticity. Commun. Pure Appl. Maths 60, 911950.
Constantin, A. & Varvaruca, E. 2011 Steady periodic water waves with constant vorticity: regularity and local bifurcation. Arch. Rat. Mech. Anal. 199, 3367.
Craig, W. & Groves, M. D. 1994 Hamiltonian long-wave approximations to the water-wave problem. Wave Motion 19, 367389.
Doole, S. H. 1997 The bifurcation of long waves in the parameter space of pressure head and flowforce. Q. J. Mech. Appl. Maths 50, 1734.
Doole, S. H. 1998 The pressure head and flowforce parameter space for waves with constant vorticity. Q. J. Mech. Appl. Maths 51, 6171.
Ehrnström, M., Escher, J. & Villari, G. 2012 Steady water waves with multiple critical layers: interior dynamics. J. Math. Fluid Mech. 14, 407419.
Ehrnström, M., Escher, J. & Wahlén, E. 2011 Steady water waves with multiple critical layers. SIAM J. Math. Anal. 43, 14361456.
Groves, M. D. & Toland, J. F. 1997 On variational formulations for steady water waves. Arch. Rat. Mech. Math. Anal. 137, 203226.
Groves, M. D. & Wahlén, E. 2007 Spatial dynamics methods for solitary gravity–capillary water waves. SIAM J. Math. Anal. 39, 932964.
Groves, M. D. & Wahlén, E. 2008 Small-amplitude Stokes and solitary gravity water waves with an arbitrary distribution of vorticity. Physica D 237, 15301538.
Hur, V. M. & Lin, Z. 2008 Unstable surface waves in running water. Commun. Math. Phys. 282, 733796 2013 Erratum. Ibid. 318, 857–861.
Keady, G. & Norbury, J. 1978 Waves and conjugate streams with vorticity. Mathematika 25, 129150.
Kozlov, V. & Kuznetsov, N. 2010 The Benjamin–Lighthill conjecture for near-critical values of Bernoulli’s constant. Arch. Rat. Mech. Math. Anal. 197, 433488.
Kozlov, V. & Kuznetsov, N. 2011a The Benjamin–Lighthill conjecture for steady water waves (revisited). Arch. Rat. Mech. Anal. 201, 631645.
Kozlov, V. & Kuznetsov, N. 2011b Steady free-surface vortical flows parallel to the horizontal bottom. Q. J. Mech. Appl. Maths 64, 371399.
Kozlov, V. & Kuznetsov, N. 2012 Bounds for steady water waves with vorticity. J. Differ. Equ. 252, 663691.
Kozlov, V. & Kuznetsov, N. 2013 Dispersion equation for water waves with vorticity and Stokes waves on flows with counter-currents. Arch. Rat. Mech. Math. Anal., (submitted). Preprint available online at http://arXiv.org/abs/1207.5181.
Lavrentiev, M. & Shabat, B. 1980 Effets Hydrodynamiques et Modèles Mathématiques. Mir.
Strauss, W. 2010 Steady water waves. Bull. Am. Math. Soc. 47, 671694.
Swan, C., Cummins, I. & James, R. 2001 An experimental study of two-dimensional surface water waves propagating in depth-varying currents. J. Fluid Mech. 428, 273304.
Thomas, G. P. 1990 Wave-current interactions: an experimental and numerical study. J. Fluid Mech. 216, 505536.
Wahlén, E. 2007 Steady water waves with constant vorticity. Lett. Math. Phys. 79, 303315.
Wahlén, E. 2008 Hamiltonian long-wave approximations of water waves with constant vorticity. Phys. Lett. A 372, 25972602.
Wahlén, E. 2009 Steady water waves with a critical layer. J. Differ. Equ. 246, 24682483.
Zakharov, V. E. 1968 Stability of periodic waves of finite amplitude on the surface of a deep fluid. Zh. Prikl. Mekh. Tekh. Fiz. 9, 8694 (translation in J. Appl. Mech. Tech. Phys. 9, 190–194).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed