Skip to main content
×
Home
    • Aa
    • Aa

Tidally generated internal-wave attractors between double ridges

  • P. ECHEVERRI (a1), T. YOKOSSI (a1), N. J. BALMFORTH (a2) and T. PEACOCK (a1)
Abstract

A study is presented of the generation of internal tides by barotropic tidal flow over topography in the shape of a double ridge. An iterative map is constructed to expedite the search for the closed ray paths that form wave attractors in this geometry. The map connects the positions along a ray path of consecutive reflections from the surface, which is double-valued owing to the presence of both left- and right-going waves, but which can be made into a genuine one-dimensional map using a checkerboarding algorithm. Calculations are then presented for the steady-state scattering of internal tides from the barotropic tide above the double ridges. The calculations exploit a Green function technique that distributes sources along the topography to generate the scattering, and discretizes in space to calculate the source density via a standard matrix inversion. When attractors are present, the numerical procedure appears to fail, displaying no convergence with the number of grid points used in the spatial discretizations, indicating a failure of the Green function solution. With the addition of dissipation into the problem, these difficulties are avoided, leading to convergent numerical solutions. The paper concludes with a comparison between theory and a laboratory experiment.

Copyright
Corresponding author
Email address for correspondence: paulae@alum.mit.edu
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 16 *
Loading metrics...

Abstract views

Total abstract views: 110 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 25th June 2017. This data will be updated every 24 hours.