Skip to main content
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 58
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Marx, Michael Thomas and Messner, Benjamin 2012. A general definition of the term “plastron“ in terrestrial and aquatic arthropods. Organisms Diversity & Evolution, Vol. 12, Issue. 4, p. 403.

    Gruncell, Brian R. K. Sandham, Neil D. and McHale, Glen 2013. Simulations of laminar flow past a superhydrophobic sphere with drag reduction and separation delay. Physics of Fluids, Vol. 25, Issue. 4, p. 043601.

    2016. Advances in Polymer Materials and Technology.

    Dilip, D. Bobji, M. S. and Govardhan, Raghuraman N. 2015. Effect of absolute pressure on flow through a textured hydrophobic microchannel. Microfluidics and Nanofluidics, Vol. 19, Issue. 6, p. 1409.

    Renault, D. 2011. Sea water transport and submersion tolerance as dispersal strategies for the invasive ground beetle Merizodus soledadinus (Carabidae). Polar Biology, Vol. 34, Issue. 10, p. 1591.

    Ferrari, Michele and Benedetti, Alessandro 2015. Superhydrophobic surfaces for applications in seawater. Advances in Colloid and Interface Science, Vol. 222, p. 291.

    Kyselo, Miriam 2014. The body social: an enactive approach to the self. Frontiers in Psychology, Vol. 5,

    Roach, Paul and Shirtcliffe, Neil 2013. Self-Cleaning Materials and Surfaces.

    Verho, Tuukka Bower, Chris Andrew, Piers Franssila, Sami Ikkala, Olli and Ras, Robin H. A. 2011. Mechanically Durable Superhydrophobic Surfaces. Advanced Materials, Vol. 23, Issue. 5, p. 673.

    Vella, Dominic 2015. Floating Versus Sinking. Annual Review of Fluid Mechanics, Vol. 47, Issue. 1, p. 115.

    McHale, G. Shirtcliffe, N. J. Evans, C. R. and Newton, M. I. 2009. Terminal velocity and drag reduction measurements on superhydrophobic spheres. Applied Physics Letters, Vol. 94, Issue. 6, p. 064104.

    Leonardi, Maria Soledad and Lazzari, Claudio R. 2014. Uncovering deep mysteries: The underwater life of an amphibious louse. Journal of Insect Physiology, Vol. 71, p. 164.

    Latthe, Sanjay Terashima, Chiaki Nakata, Kazuya and Fujishima, Akira 2014. Superhydrophobic Surfaces Developed by Mimicking Hierarchical Surface Morphology of Lotus Leaf. Molecules, Vol. 19, Issue. 4, p. 4256.

    Hemeda, A. A. Gad-el-Hak, M. and Tafreshi, H. Vahedi 2014. Effects of hierarchical features on longevity of submerged superhydrophobic surfaces with parallel grooves. Physics of Fluids, Vol. 26, Issue. 8, p. 082103.

    Velianti, Park, Seung Bin and Heo, Pil Woo 2014. The enhancement of oxygen separation from the air and water using poly(vinylidene fluoride) membrane modified with superparamagnetic particles. Journal of Membrane Science, Vol. 466, p. 274.

    Shirtcliffe, Neil J. McHale, Glen and I. Newton, Michael 2011. The superhydrophobicity of polymer surfaces: Recent developments. Journal of Polymer Science Part B: Polymer Physics, Vol. 49, Issue. 17, p. 1203.

    Emami, B. Hemeda, A. A. Amrei, M. M. Luzar, A. Gad-el-Hak, M. and Vahedi Tafreshi, H. 2013. Predicting longevity of submerged superhydrophobic surfaces with parallel grooves. Physics of Fluids, Vol. 25, Issue. 6, p. 062108.

    Dupont, Steen T.K. 2014. Chambered cuticle, pellicles, strange sensilla, and extraordinary muscle arrangements: A study of the micropterigid larval trunk (Lepidoptera: Micropterigidae). Journal of Morphology, Vol. 275, Issue. 7, p. 797.

    Piao, Linfeng and Park, Hyungmin 2015. Two-Dimensional Analysis of Air–Water Interface on Superhydrophobic Grooves under Fluctuating Water Pressure. Langmuir, Vol. 31, Issue. 29, p. 8022.

    Suter, Robert B. 2013. Spider locomotion on the water surface: biomechanics and diversity. Journal of Arachnology, Vol. 41, Issue. 2, p. 93.

  • Journal of Fluid Mechanics, Volume 608
  • August 2008, pp. 275-296

Underwater breathing: the mechanics of plastron respiration

  • M. R. FLYNN (a1) and JOHN W. M. BUSH (a1)
  • DOI:
  • Published online: 10 August 2008

The rough, hairy surfaces of many insects and spiders serve to render them water-repellent; consequently, when submerged, many are able to survive by virtue of a thin air layer trapped along their exteriors. The diffusion of dissolved oxygen from the ambient water may allow this layer to function as a respiratory bubble or ‘plastron’, and so enable certain species to remain underwater indefinitely. Maintenance of the plastron requires that the curvature pressure balance the pressure difference between the plastron and ambient. Moreover, viable plastrons must be of sufficient area to accommodate the interfacial exchange of O2 and CO2 necessary to meet metabolic demands. By coupling the bubble mechanics, surface and gas-phase chemistry, we enumerate criteria for plastron viability and thereby deduce the range of environmental conditions and dive depths over which plastron breathers can survive. The influence of an external flow on plastron breathing is also examined. Dynamic pressure may become significant for respiration in fast-flowing, shallow and well-aerated streams. Moreover, flow effects are generally significant because they sharpen chemical gradients and so enhance mass transfer across the plastron interface. Modelling this process provides a rationale for the ventilation movements documented in the biology literature, whereby arthropods enhance plastron respiration by flapping their limbs or antennae. Biomimetic implications of our results are discussed.

Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

M. E. Abdelsalam , P. N. Bartlett , T. Kelf & J. Baumberg 2005 Wetting of regularly structured gold surfaces. Langmuir 21, 17531757.

W. Barthlott & C. Neinhuis 1997 Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202, 18.

J. Bico , B. Roman , L. Moulin & A. Boudaoud 2004 Elastocapillary coalescence in wet hair. Nature 432, 690.

J. Bico , U. Thiele & D. Quérée 2002 Wetting of textured surfaces. Colloids Surf. A 206, 4146.

H. P. Brown 1987 Biology of riffle beetles. Annu. Rev. Entomol. 32, 253273.

J. W. M. Bush & D. L. Hu 2006 Walking on water: Biolocomotion at the interface. Annu. Rev. Fluid Mech. 38, 339369.

J. W. M. Bush , D. L. Hu & M. Prakash 2008 The integument of water-walking anthropods: Form and function. Adv. Insect Physiol. 34, 117192.

L. Cao , H.-H. Hu & D. Gao 2007 Design and fabrication of mirco-textures for inducing a superhydrophobic behavior on hydrophilic materials. Langmuir 23, 43104314.

A. B. D. Cassie & S. Baxter 1944 Wettability of porous surfaces. Trans. Faraday Soc. 40, 546551.

J. G. Chaui-Berlinck , J. E. Bicudo & L. H. Monteiro 2001 The oxygen gain of diving insects. Respir. Physiol. 128, 229233.

Y. Chen , B. He , J. Lee & N. A. Patankar 2005 Anisotropy in the wetting of rough surfaces. J. Colloid Interface Sci. 281, 458464.

I. D. Couzin & J. Krause 2003 Self-organization and collective behavior in vertebrates. J. Adv. Study Behav. 32, 175.

D. J. Crisp 1949 The stability of structures at a fluid interface. Trans. Faraday Soc. 46, 228235.

Xi-Qiao Feng & Lei Jiang 2006 Design and creation of superwetting/antiwetting surfaces. Adv. Mater. 18, 30633078.

S. H. Gittelman 1975 Physical gill efficiency and water dormancy in the pigmy backswimmer, Neoplea striola (Hemiptera: Pleidae). Ann. Entomolo. Soc. Am. 68, 10111017.

S. Herminghaus 2000 Roughness-induced non-wetting. Europhys. Lett. 52, 165170.

H. E. Hinton 1976 Plastron respiration in bugs and beetles. J. Insect Physiol. 22, 15291550.

H. E. Hinton & G. M. Jarman 1976 A diffusion equation for tapered plastrons. J. Insect Physiol. 22, 12631265.

P. A. Kralchevsky & N. D. Denkov 2001 Capillary forces and structuring in layers of colloid particles. Curr. Opin. Colloid Interface Sci. 6, 383401.

A. Lafuma & D. Quéré 2003 Superhydrophobic states. Nature Materials 2, 457460.

P. F. Linden 1999 The fluid mechanics of natural ventilation. Annu. Rev. Fluid Mech. 31, 201238.

P. G. D. Matthews & R. S. Seymour 2006 Diving insects boost their buoyancy bubbles. Nature 441, 171.

C. Neinhuis & W. Barthlott 1997 Characterization and distribution of water-repellent, self-cleaning plant surfaces. Annu. Bot. 79, 667677.

M. Nosonovsky 2007 Multiscale roughness and stability of superhydrophobic biomimetic interfaces. Langmuir 23, 31573161.

A. Otten & S. Herminghaus 2004 How plants keep dry: A physicist's point of view. Langmuir 20, 24052408.

H. Rahn & C. V. Paganelli 1968 Gas exchange in gas gills of diving insects. Respir. Physiol. 5, 145164.

M. Reysatt , J. M. Yeomans & D. Quéré 2008 Implacement of fakir drops. Europhys. Lett. 81, 26006.

N. J. Shirtcliffe , G. McHale , M. I. Newton , C. C. Perry & F. Brian Pyatt 2006 Plastron properties of a superhydrophobic surface. Appl. Phys. Lett. 89, 104106.

J. R. Spence , D. H. Spence & G. G. Scudder 1980 Submergence behavior in Gerris: Underwater basking. Am. Midl. Nat. 103, 385391.

G. E. Stratton , R. B. Suter & P. R. Miller 2004 Evolution of water surface locomotion by spiders: a comparative approach. Biol. J. Linn. Soc. 81 (1), 6378.

G. O. Stride 1954 On the respiration of an aquatic african beetle, Potamodytes tuberosus Hinton. Ann. Entomolo. Soc. Am. 48, 344351.

W. H. Thorpe 1950 Plastron respiration in aquatic insects. Biol. Rev. 25, 344390.

S. Vogel 2006 Living in a physical world viii. Gravity and life in the water. J. Biosci. 31, 309322.

P Wagner , R Furstner , W Barthlott & C Neinhuis 2003 Quantitative assessment to the structural basis of water repellency in natural and technical surfaces. J. Expl Bot. 54, 12951303.

R. N. Wenzel 1936 Resistance of solid surfaces to wetting by water. Ind. Engng Chem. 28, 988994.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *