Skip to main content
    • Aa
    • Aa

Underwater breathing: the mechanics of plastron respiration

  • M. R. FLYNN (a1) and JOHN W. M. BUSH (a1)

The rough, hairy surfaces of many insects and spiders serve to render them water-repellent; consequently, when submerged, many are able to survive by virtue of a thin air layer trapped along their exteriors. The diffusion of dissolved oxygen from the ambient water may allow this layer to function as a respiratory bubble or ‘plastron’, and so enable certain species to remain underwater indefinitely. Maintenance of the plastron requires that the curvature pressure balance the pressure difference between the plastron and ambient. Moreover, viable plastrons must be of sufficient area to accommodate the interfacial exchange of O2 and CO2 necessary to meet metabolic demands. By coupling the bubble mechanics, surface and gas-phase chemistry, we enumerate criteria for plastron viability and thereby deduce the range of environmental conditions and dive depths over which plastron breathers can survive. The influence of an external flow on plastron breathing is also examined. Dynamic pressure may become significant for respiration in fast-flowing, shallow and well-aerated streams. Moreover, flow effects are generally significant because they sharpen chemical gradients and so enhance mass transfer across the plastron interface. Modelling this process provides a rationale for the ventilation movements documented in the biology literature, whereby arthropods enhance plastron respiration by flapping their limbs or antennae. Biomimetic implications of our results are discussed.

Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

M. E. Abdelsalam , P. N. Bartlett , T. Kelf & J. Baumberg 2005 Wetting of regularly structured gold surfaces. Langmuir 21, 17531757.

W. Barthlott & C. Neinhuis 1997 Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202, 18.

J. Bico , B. Roman , L. Moulin & A. Boudaoud 2004 Elastocapillary coalescence in wet hair. Nature 432, 690.

J. Bico , U. Thiele & D. Quérée 2002 Wetting of textured surfaces. Colloids Surf. A 206, 4146.

H. P. Brown 1987 Biology of riffle beetles. Annu. Rev. Entomol. 32, 253273.

J. W. M. Bush & D. L. Hu 2006 Walking on water: Biolocomotion at the interface. Annu. Rev. Fluid Mech. 38, 339369.

J. W. M. Bush , D. L. Hu & M. Prakash 2008 The integument of water-walking anthropods: Form and function. Adv. Insect Physiol. 34, 117192.

L. Cao , H.-H. Hu & D. Gao 2007 Design and fabrication of mirco-textures for inducing a superhydrophobic behavior on hydrophilic materials. Langmuir 23, 43104314.

A. B. D. Cassie & S. Baxter 1944 Wettability of porous surfaces. Trans. Faraday Soc. 40, 546551.

J. G. Chaui-Berlinck , J. E. Bicudo & L. H. Monteiro 2001 The oxygen gain of diving insects. Respir. Physiol. 128, 229233.

Y. Chen , B. He , J. Lee & N. A. Patankar 2005 Anisotropy in the wetting of rough surfaces. J. Colloid Interface Sci. 281, 458464.

I. D. Couzin & J. Krause 2003 Self-organization and collective behavior in vertebrates. J. Adv. Study Behav. 32, 175.

D. J. Crisp 1949 The stability of structures at a fluid interface. Trans. Faraday Soc. 46, 228235.

Xi-Qiao Feng & Lei Jiang 2006 Design and creation of superwetting/antiwetting surfaces. Adv. Mater. 18, 30633078.

S. H. Gittelman 1975 Physical gill efficiency and water dormancy in the pigmy backswimmer, Neoplea striola (Hemiptera: Pleidae). Ann. Entomolo. Soc. Am. 68, 10111017.

S. Herminghaus 2000 Roughness-induced non-wetting. Europhys. Lett. 52, 165170.

H. E. Hinton 1976 Plastron respiration in bugs and beetles. J. Insect Physiol. 22, 15291550.

H. E. Hinton & G. M. Jarman 1976 A diffusion equation for tapered plastrons. J. Insect Physiol. 22, 12631265.

H.-Y. Kim & L. Mahadevan 2006 Capillary rise between elastic sheets. J. Fluid Mech. 548, 141150.

P. A. Kralchevsky & N. D. Denkov 2001 Capillary forces and structuring in layers of colloid particles. Curr. Opin. Colloid Interface Sci. 6, 383401.

A. Lafuma & D. Quéré 2003 Superhydrophobic states. Nature Materials 2, 457460.

P. F. Linden 1999 The fluid mechanics of natural ventilation. Annu. Rev. Fluid Mech. 31, 201238.

P. G. D. Matthews & R. S. Seymour 2006 Diving insects boost their buoyancy bubbles. Nature 441, 171.

C. Neinhuis & W. Barthlott 1997 Characterization and distribution of water-repellent, self-cleaning plant surfaces. Annu. Bot. 79, 667677.

M. Nosonovsky 2007 Multiscale roughness and stability of superhydrophobic biomimetic interfaces. Langmuir 23, 31573161.

A. Otten & S. Herminghaus 2004 How plants keep dry: A physicist's point of view. Langmuir 20, 24052408.

H. Rahn & C. V. Paganelli 1968 Gas exchange in gas gills of diving insects. Respir. Physiol. 5, 145164.

M. Reysatt , J. M. Yeomans & D. Quéré 2008 Implacement of fakir drops. Europhys. Lett. 81, 26006.

N. J. Shirtcliffe , G. McHale , M. I. Newton , C. C. Perry & F. Brian Pyatt 2006 Plastron properties of a superhydrophobic surface. Appl. Phys. Lett. 89, 104106.

J. R. Spence , D. H. Spence & G. G. Scudder 1980 Submergence behavior in Gerris: Underwater basking. Am. Midl. Nat. 103, 385391.

G. E. Stratton , R. B. Suter & P. R. Miller 2004 Evolution of water surface locomotion by spiders: a comparative approach. Biol. J. Linn. Soc. 81 (1), 6378.

G. O. Stride 1954 On the respiration of an aquatic african beetle, Potamodytes tuberosus Hinton. Ann. Entomolo. Soc. Am. 48, 344351.

W. H. Thorpe 1950 Plastron respiration in aquatic insects. Biol. Rev. 25, 344390.

S. Vogel 2006 Living in a physical world viii. Gravity and life in the water. J. Biosci. 31, 309322.

P Wagner , R Furstner , W Barthlott & C Neinhuis 2003 Quantitative assessment to the structural basis of water repellency in natural and technical surfaces. J. Expl Bot. 54, 12951303.

R. N. Wenzel 1936 Resistance of solid surfaces to wetting by water. Ind. Engng Chem. 28, 988994.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 194 *
Loading metrics...

Abstract views

Total abstract views: 408 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 25th July 2017. This data will be updated every 24 hours.