Skip to main content
×
×
Home

Underwater breathing: the mechanics of plastron respiration

  • M. R. FLYNN (a1) and JOHN W. M. BUSH (a1)
Abstract

The rough, hairy surfaces of many insects and spiders serve to render them water-repellent; consequently, when submerged, many are able to survive by virtue of a thin air layer trapped along their exteriors. The diffusion of dissolved oxygen from the ambient water may allow this layer to function as a respiratory bubble or ‘plastron’, and so enable certain species to remain underwater indefinitely. Maintenance of the plastron requires that the curvature pressure balance the pressure difference between the plastron and ambient. Moreover, viable plastrons must be of sufficient area to accommodate the interfacial exchange of O2 and CO2 necessary to meet metabolic demands. By coupling the bubble mechanics, surface and gas-phase chemistry, we enumerate criteria for plastron viability and thereby deduce the range of environmental conditions and dive depths over which plastron breathers can survive. The influence of an external flow on plastron breathing is also examined. Dynamic pressure may become significant for respiration in fast-flowing, shallow and well-aerated streams. Moreover, flow effects are generally significant because they sharpen chemical gradients and so enhance mass transfer across the plastron interface. Modelling this process provides a rationale for the ventilation movements documented in the biology literature, whereby arthropods enhance plastron respiration by flapping their limbs or antennae. Biomimetic implications of our results are discussed.

Copyright
References
Hide All
Abdelsalam M. E., Bartlett P. N., Kelf T. & Baumberg J. 2005 Wetting of regularly structured gold surfaces. Langmuir 21, 17531757.
Andersen N. M. 1976 A comparative study of locomotion on the water surface in semiaquatic bugs (Insects, Hemiptera, Gerromorpha). Vidensk. Meddr. Dansk. Naturh. Foren. 139, 337396.
Andersen N. M. 1977 Fine structure of the body hair layers and morphology of the spiracles of semiaquatic bugs (Insecta, Hemiptera, Gerromorpha) in relation to life on the water surface. Vidensk. Meddr. Dansk. Naturh. Foren. 140, 737.
Andersen N. M. & Polhemus J. T. 1976 Water-striders (Hemiptera: Gerridae, Veliidae, etc.). In Marine Insects (ed. Cheng L.), pp. 187–224. A North Holland.
Barthlott W. & Neinhuis C. 1997 Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202, 18.
Bico J., Roman B., Moulin L. & Boudaoud A. 2004 Elastocapillary coalescence in wet hair. Nature 432, 690.
Bico J., Thiele U. & Quérée D. 2002 Wetting of textured surfaces. Colloids Surf. A 206, 4146.
Brocher F. 1912 a Reserches sur la respiration des insects aquatiques adultes – les elmides. Ann. Biol. Lac. 5, 136179.
Brocher F. 1912 b Reserches sur la respiration des insects aquatiques adultes – les haemonia. Ann. Biol. Lac. 5, 526.
Brown H. P. 1987 Biology of riffle beetles. Annu. Rev. Entomol. 32, 253273.
Bush J. W. M. & Hu D. L. 2006 Walking on water: Biolocomotion at the interface. Annu. Rev. Fluid Mech. 38, 339369.
Bush J. W. M., Hu D. L. & Prakash M. 2008 The integument of water-walking anthropods: Form and function. Adv. Insect Physiol. 34, 117192.
Cao L., Hu H.-H. & Gao D. 2007 Design and fabrication of mirco-textures for inducing a superhydrophobic behavior on hydrophilic materials. Langmuir 23, 43104314.
Carbone G. & Mangialardi L. 2005 Hydrophobic properties of a wavy rough substrate. Eur. Phys. J. E 16, 6776.
Cassie A. B. D. & Baxter S. 1944 Wettability of porous surfaces. Trans. Faraday Soc. 40, 546551.
Chaui-Berlinck J. G., Bicudo J. E. & Monteiro L. H. 2001 The oxygen gain of diving insects. Respir. Physiol. 128, 229233.
Chen Y., He B., Lee J. & Patankar N. A. 2005 Anisotropy in the wetting of rough surfaces. J. Colloid Interface Sci. 281, 458464.
Couzin I. D. & Krause J. 2003 Self-organization and collective behavior in vertebrates. J. Adv. Study Behav. 32, 175.
Crisp D. J. 1949 The stability of structures at a fluid interface. Trans. Faraday Soc. 46, 228235.
Dokulil M. T. 2005 European alpine lakes. In The Lake Handbook(ed. O'Sullivan P. E. & Reynolds C. S.), vol. 2, pp. 159178. Blackwell.
Doyen J. T. 1976 Marine beetles (Coleoptera excluding Staphylinidae). In Aquatic Insects (ed. Cheng L.), pp. 497520. North-Holland.
Ege R. 1918 On the respiratory function of the air stores carried by some aquatic insects. Z. Allg. Physiol. 17, 81124.
Feng Xi-Qiao & Jiang Lei 2006 Design and creation of superwetting/antiwetting surfaces. Adv. Mater. 18, 30633078.
Geankoplis C. J. 1993 Transport Processes and Unit Operations. Prentice Hall.
de Gennes P G, Brochard-Wyart F & Quéré D 2003 Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls and Waves. Springer.
Gittelman S. H. 1975 Physical gill efficiency and water dormancy in the pigmy backswimmer, Neoplea striola (Hemiptera: Pleidae). Ann. Entomolo. Soc. Am. 68, 10111017.
Herminghaus S. 2000 Roughness-induced non-wetting. Europhys. Lett. 52, 165170.
Hinton H. E. 1976 Plastron respiration in bugs and beetles. J. Insect Physiol. 22, 15291550.
Hinton H. E. & Jarman G. M. 1976 A diffusion equation for tapered plastrons. J. Insect Physiol. 22, 12631265.
Holdgate M. W. 1955 The wetting of insect cuticle by water. J. Expl Biol. 32, 591617.
Kim H.-Y. & Mahadevan L. 2006 Capillary rise between elastic sheets. J. Fluid Mech. 548, 141150.
Kralchevsky P. A. & Denkov N. D. 2001 Capillary forces and structuring in layers of colloid particles. Curr. Opin. Colloid Interface Sci. 6, 383401.
Kundu P. K. 1990 Fluid Mechanics, 1st edn. Academic.
Lafuma A. & Quéré D. 2003 Superhydrophobic states. Nature Materials 2, 457460.
Lamoral B. H. 1968 On the ecology and habitat adaptations of two intertidal spiders, Desis formidabilis and Amaurobioides africanus Hewitt at ‘The Ísland’ (Kommetjie, Cape Peninsula) with notes on the occurence of two other spiders. Annu. Natal. Mus. 20, 151193.
Linden P. F. 1999 The fluid mechanics of natural ventilation. Annu. Rev. Fluid Mech. 31, 201238.
Matthews P. G. D. & Seymour R. S. 2006 Diving insects boost their buoyancy bubbles. Nature 441, 171.
McMahon T. & Bonner J. T. 1985 On Size and Life. W. H. Freeman & Co.
Neinhuis C. & Barthlott W. 1997 Characterization and distribution of water-repellent, self-cleaning plant surfaces. Annu. Bot. 79, 667677.
Nosonovsky M. 2007 Multiscale roughness and stability of superhydrophobic biomimetic interfaces. Langmuir 23, 31573161.
Otten A. & Herminghaus S. 2004 How plants keep dry: A physicist's point of view. Langmuir 20, 24052408.
Perez-Goodwyn P. J. 2007 Anti-wetting surfaces in Heteroptera (Insecta): Hairy solutions to any problem. In Functional Surfaces in Biology. Springer.
Rahn H. & Paganelli C. V. 1968 Gas exchange in gas gills of diving insects. Respir. Physiol. 5, 145164.
Reysatt M., Yeomans J. M. & Quéré D. 2008 Implacement of fakir drops. Europhys. Lett. 81, 26006.
Reyssat M. C. 2007 Splendeur et misére de l'effet lotus. PhD thesis, Université Pierre et Marie Curie.
de Ruiter L., Wolvekamp H. P., van Tooren A. J. & Vlasblom A. 1951 Experiments on the efficiency of the “physical gill” (Hydrous piceus l., Naucoris cimicoides l., and Notonecta glauca l.). Acta Physiol. Pharmacol. Neerl. pp. 180–213.
Schmidt-Nielsen K. 1975 Animal Physiology – Adaptation and Environment. Cambridge University Press.
Schütz D. & Taborsky M. 2003 Adaptations to an aquatic life may be responsible for the reversed sexual size dimorphism in the water spider, argyroneta aquatica. Ecol. Evol. Res. 5, 105117.
Shirtcliffe N. J., McHale G., Newton M. I., Perry C. C. & Pyatt F. Brian 2006 Plastron properties of a superhydrophobic surface. Appl. Phys. Lett. 89, 104106.
Spence J. R., Spence D. H. & Scudder G. G. 1980 Submergence behavior in Gerris: Underwater basking. Am. Midl. Nat. 103, 385391.
Stratton G. E., Suter R. B. & Miller P. R. 2004 Evolution of water surface locomotion by spiders: a comparative approach. Biol. J. Linn. Soc. 81 (1), 6378.
Stride G. O. 1954 On the respiration of an aquatic african beetle, Potamodytes tuberosus Hinton. Ann. Entomolo. Soc. Am. 48, 344351.
Thorpe W. H. 1950 Plastron respiration in aquatic insects. Biol. Rev. 25, 344390.
Thorpe W. H. & Crisp D. J. 1947 a Studies on plastron respiration. Part I. The biology of Aphelocheirus [Hemiptera, Aphelocheiridae (Naucoridae)] and the mechanism of plastron retention. J. Expl Biol. 24, 227269.
Thorpe W. H. & Crisp D. J. 1947 b Studies on plastron respiration. Part II. The respiratory efficiency of the plastron in Aphelocheirus. J. Expl Biol. 24, 270303.
Thorpe W. H. & Crisp D. J. 1947 c Studies on plastron respiration. Part III. The orientation responses of Aphelocheirus [Hemiptera, Aphelocheiridae (Naucoridae)] in relation to plastron respiration; together with an account of specialized pressure receptors in aquatic insects. J. Expl Biol. 24, 310328.
Thorpe W. H. & Crisp D. J. 1949 Studies on plastron respiration. Part IV. Plastron respiration in the Coleoptera. J. Expl Biol. 26, 219260.
Vogel S. 2006 Living in a physical world viii. Gravity and life in the water. J. Biosci. 31, 309322.
Wagner P, Furstner R, Barthlott W & Neinhuis C 2003 Quantitative assessment to the structural basis of water repellency in natural and technical surfaces. J. Expl Bot. 54, 12951303.
Wenzel R. N. 1936 Resistance of solid surfaces to wetting by water. Ind. Engng Chem. 28, 988994.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 2
Total number of PDF views: 262 *
Loading metrics...

Abstract views

Total abstract views: 704 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 19th January 2018. This data will be updated every 24 hours.