Skip to main content

Vorticity moments in four numerical simulations of the 3D Navier–Stokes equations

  • Diego A. Donzis (a1), John D. Gibbon (a2), Anupam Gupta (a3), Robert M. Kerr (a4), Rahul Pandit (a3) (a5) and Dario Vincenzi (a6)...

The issue of intermittency in numerical solutions of the 3D Navier–Stokes equations on a periodic box ${[0, L] }^{3} $ is addressed through four sets of numerical simulations that calculate a new set of variables defined by ${D}_{m} (t)= {({ \varpi }_{0}^{- 1} {\Omega }_{m} )}^{{\alpha }_{m} } $ for $1\leq m\leq \infty $ where ${\alpha }_{m} = 2m/ (4m- 3)$ and ${[{\Omega }_{m} (t)] }^{2m} = {L}^{- 3} \int \nolimits _{\mathscr{V}} {\vert \boldsymbol{\omega} \vert }^{2m} \hspace{0.167em} \mathrm{d} V$ with ${\varpi }_{0} = \nu {L}^{- 2} $ . All four simulations unexpectedly show that the ${D}_{m} $ are ordered for $m= 1, \ldots , 9$ such that ${D}_{m+ 1} \lt {D}_{m} $ . Moreover, the ${D}_{m} $ squeeze together such that ${D}_{m+ 1} / {D}_{m} \nearrow 1$ as $m$ increases. The values of ${D}_{1} $ lie far above the values of the rest of the ${D}_{m} $ , giving rise to a suggestion that a depletion of nonlinearity is occurring which could be the cause of Navier–Stokes regularity. The first simulation is of very anisotropic decaying turbulence; the second and third are of decaying isotropic turbulence from random initial conditions and forced isotropic turbulence at fixed Grashof number respectively; the fourth is of very-high-Reynolds-number forced, stationary, isotropic turbulence at up to resolutions of $409{6}^{3} $ .

Corresponding author
Email address for correspondence:
Hide All
Arneodo, A., Benzi, R., Berg, J., Biferale, L., Bodenschatz, E., Busse, A., Calzavarini, E., Castaing, B., Cencini, M., Chevillard, L., Fisher, R. T., Grauer, R., Homann, H., Lamb, D., Lanotte, A. S., Leveque, E., Luethi, B., Mann, J., Mordant, N., Mueller, W.-C., Ott, S., Ouellette, N. T., Pinton, J.-F., Pope, S. B., Roux, S. G., Toschi, F., Xu, H. & Yeung, P. K. 2008 Universal intermittent properties of particle trajectories in highly turbulent flows. Phys. Rev. Lett. 100, 254504.
Betchov, R. 1956 An inequality concerning the production of vorticity in isotropic turbulence. J. Fluid Mech. 1, 497504.
Boffetta, G., Mazzino, A. & Vulpiani, A. 2008 Twenty-five years of multifractals in fully developed turbulence: a tribute to Giovanni Paladin. J. Phys. A: Math. Theor. 41, 363001.
Bustamante, M. D. & Kerr, R. M. 2008 3D Euler about a 2D symmetry plane. Physica D 237, 19121920.
Chakraborty, S., Frisch, U. & Ray, S. S. 2012 Nelkin scaling for the Burgers equation and the role of high-precision calculations. Phys. Rev. E 85, 015301.
Doering, C. R. & Foias, C. 2002 Energy dissipation in body-forced turbulence. J. Fluid Mech. 467, 289306.
Doering, C. R & Gibbon, J. D. 1995 Applied Analysis of the Navier–Stokes Equations. Cambridge University Press.
Donzis, D., Sreenivasan, K. & Yeung, P. K. 2012 Some results on the Reynolds number scaling of pressure statistics in isotropic turbulence. Physica D 241, 164168.
Donzis, D. & Yeung, P. K. 2010 Resolution effects and scaling in numerical simulations of passive scalar mixing in turbulence. Physica D 239, 12781287.
Donzis, D., Yeung, P. K. & Sreenivasan, K. 2008 Dissipation and enstrophy in isotropic turbulence: scaling and resolution effects in direct numerical simulations. Phys. Fluids 20, 045108.
Eswaran, V. & Pope, S. B. 1988 An examination of forcing in direct numerical simulations of turbulence. Comput. Fluids 16, 257278.
Frisch, U. 1995 Turbulence: the Legacy of A. N. Kolmogorov. Cambridge University Press.
Gibbon, J. D. 2010 Regularity and singularity in solutions of the three-dimensional Navier–Stokes equations. Proc. R. Soc. A 466, 25872604.
Gibbon, J. D. 2011 A hierarchy of length scales for weak solutions of the three-dimensional Navier–Stokes equations. Comm. Math. Sci. 10, 131136.
Gibbon, J. D. 2012 Conditional regularity of solutions of the three-dimensional Navier–Stokes equations and implications for intermittency. J. Math. Phys. 53, 115608.
Gibbon, J. D. 2013 Dynamics of scaled vorticity norms for the three-dimensional Navier–Stokes and Euler equations. Procedia IUTAM: Proceedings of IUTAM Symposium Topological Fluid Dynamics II, vol. 7, pp 39–48.
Hentschel, H. G. E. & Procaccia, I. 1983 The infinite number of generalized dimensions of fractals and strange attractors. Physica D 8, 435444.
Holm, D. D. & Kerr, R. M. 2007 Helicity in the formation of turbulence. Phys. Fluids 19, 025101.
Ishihara, T., Gotoh, T. & Kaneda, Y. 2009 Study of high-Reynolds number isotropic turbulence by direct numerical simulation. Annu. Rev. Fluid Mech. 41, 16180.
Jimenez, J., Wray, A., Saffman, P. G. & Rogallo, R. S. 1993 The structure of intense vorticity in isotropic turbulence. J. Fluid Mech. 255, 6590.
Kerr, R. M. 1985 Higher-order derivative correlations and the alignment of small-scale structures in isotropic numerical turbulence. J. Fluid Mech. 153, 3158.
Kerr, R. M. 1993 Evidence for a singularity of the three-dimensional incompressible Euler equations. Phys. Fluids A 5, 17251746.
Kerr, R. M. 2011 Vortex stretching as a mechanism for quantum kinetic energy decay. Phys. Rev. Lett. 106, 224501.
Kerr, R. M. 2012 Dissipation and enstrophy statistics in turbulence: are the simulations and mathematics converging? J. Fluid Mech. 700, 14.
Kerr, R. M. 2013 Bounds on a singular attractor in Euler using vorticity moments. Procedia IUTAM, Proceedings of IUTAM Symposium Topological Fluid Dynamics II, vol 7, pp. 49–58.
Kerr, R. M. 2013a Swirling, turbulent vortex rings formed from a chain reaction of reconnection events. Phys. Fluids 25, 065101.
Kerr, R. M. 2013b Bounds for Euler from vorticity moments and line divergence. J. Fluid Mech. 729, R2.
Meneveau, C. & Sreenivasan, K. R. 1991 The multifractal nature of turbulent energy dissipation. J. Fluid Mech. 224, 429484.
Meneveau, C., Sreenivasan, K. R., Kailasnath, P. & Fan, M. S. 1990 Joint multifractal measures: theory and applications to turbulence. Phys. Rev. A 41, 894913.
Nelkin, M. 1990 Multifractal scaling of velocity derivatives in turbulence. Phys. Rev. A 42, 72267229.
Orszag, S. A. & Patterson, G. S. 1972 Numerical simulation of three-dimensional homogeneous isotropic turbulence. Phys. Rev. Lett. 28, 7679.
Pandit, R., Perlekar, P. & Ray, S. S. 2009 Statistical properties of turbulence: an overview. Pramana – Journal of Physics 73, 157191.
Ray, S. S., Mitra, D. & Pandit, R. 2008 The universality of dynamic multiscaling in homogeneous, isotropic Navier–Stokes and passive-scalar turbulence. New J. Phys. 10, 033003.
Ray, S. S., Mitra, D., Perlekar, P. & Pandit, R. 2011 Dynamic multiscaling in two-dimensional fluid turbulence. Phys. Rev. Lett. 107, 184503.
Rogallo, R. S. 1981 Numerical experiments in homogeneous turbulence. Tech. Mem. 81835. NASA.
Sahoo, G., Perlekar, P. & Pandit, R. 2011 Systematics of the magnetic-Prandtl-number dependence of homogeneous, isotropic magnetohydrodynamic turbulence. New J. Phys. 13, 013036.
Schumacher, J., Sreenivasan, K. R. & Yakhot, V. 2007 Asymptotic exponents from low-Reynolds-number flows. New J. Phys. 9, 89107.
Sreenivasan, K. R. 1985 On the fine-scale intermittency of turbulence. J. Fluid Mech. 151, 81103.
Yakhot, V. & Sreenivasan, K. R. 2004 Towards a dynamical theory of multifractals in turbulence. Physica A 343, 147155.
Yeung, P. K., Donzis, D. & Sreenivasan, K. R. 2012 Dissipation, enstrophy and pressure statistics in turbulence simulations at high Reynolds numbers. J. Fluid Mech. 700, 515.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 52 *
Loading metrics...

Abstract views

Total abstract views: 300 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 23rd March 2018. This data will be updated every 24 hours.