Arneodo, A., Benzi, R., Berg, J., Biferale, L., Bodenschatz, E., Busse, A., Calzavarini, E., Castaing, B., Cencini, M., Chevillard, L., Fisher, R. T., Grauer, R., Homann, H., Lamb, D., Lanotte, A. S., Leveque, E., Luethi, B., Mann, J., Mordant, N., Mueller, W.-C., Ott, S., Ouellette, N. T., Pinton, J.-F., Pope, S. B., Roux, S. G., Toschi, F., Xu, H. & Yeung, P. K.
2008
Universal intermittent properties of particle trajectories in highly turbulent flows. Phys. Rev. Lett.
100, 254504.

Betchov, R.
1956
An inequality concerning the production of vorticity in isotropic turbulence. J. Fluid Mech.
1, 497–504.

Boffetta, G., Mazzino, A. & Vulpiani, A.
2008
Twenty-five years of multifractals in fully developed turbulence: a tribute to Giovanni Paladin. J. Phys. A: *Math. Theor.*
41, 363001.

Bustamante, M. D. & Kerr, R. M.
2008
3D Euler about a 2D symmetry plane. Physica D
237, 1912–1920.

Chakraborty, S., Frisch, U. & Ray, S. S.
2012
Nelkin scaling for the Burgers equation and the role of high-precision calculations. Phys. Rev. E
85, 015301.

Doering, C. R. & Foias, C.
2002
Energy dissipation in body-forced turbulence. J. Fluid Mech.
467, 289–306.

Doering, C. R & Gibbon, J. D.
1995
Applied Analysis of the Navier–Stokes Equations. Cambridge University Press.

Donzis, D., Sreenivasan, K. & Yeung, P. K.
2012
Some results on the Reynolds number scaling of pressure statistics in isotropic turbulence. Physica D
241, 164–168.

Donzis, D. & Yeung, P. K.
2010
Resolution effects and scaling in numerical simulations of passive scalar mixing in turbulence. Physica D
239, 1278–1287.

Donzis, D., Yeung, P. K. & Sreenivasan, K.
2008
Dissipation and enstrophy in isotropic turbulence: scaling and resolution effects in direct numerical simulations. Phys. Fluids
20, 045108.

Eswaran, V. & Pope, S. B.
1988
An examination of forcing in direct numerical simulations of turbulence. Comput. Fluids
16, 257–278.

Frisch, U.
1995
Turbulence: the Legacy of A. N. Kolmogorov. Cambridge University Press.

Gibbon, J. D.
2010
Regularity and singularity in solutions of the three-dimensional Navier–Stokes equations. Proc. R. Soc. A
466, 2587–2604.

Gibbon, J. D.
2011
A hierarchy of length scales for weak solutions of the three-dimensional Navier–Stokes equations. Comm. Math. Sci.
10, 131–136.

Gibbon, J. D.
2012
Conditional regularity of solutions of the three-dimensional Navier–Stokes equations and implications for intermittency. J. Math. Phys.
53, 115608.

Gibbon, J. D.
2013 Dynamics of scaled vorticity norms for the three-dimensional Navier–Stokes and Euler equations. *Procedia IUTAM: Proceedings of IUTAM Symposium Topological Fluid Dynamics II*, vol. 7, pp 39–48.

Hentschel, H. G. E. & Procaccia, I.
1983
The infinite number of generalized dimensions of fractals and strange attractors. Physica D
8, 435–444.

Holm, D. D. & Kerr, R. M.
2007
Helicity in the formation of turbulence. Phys. Fluids
19, 025101.

Ishihara, T., Gotoh, T. & Kaneda, Y.
2009
Study of high-Reynolds number isotropic turbulence by direct numerical simulation. Annu. Rev. Fluid Mech.
41, 16–180.

Jimenez, J., Wray, A., Saffman, P. G. & Rogallo, R. S.
1993
The structure of intense vorticity in isotropic turbulence. J. Fluid Mech.
255, 65–90.

Kerr, R. M.
1985
Higher-order derivative correlations and the alignment of small-scale structures in isotropic numerical turbulence. J. Fluid Mech.
153, 31–58.

Kerr, R. M.
1993
Evidence for a singularity of the three-dimensional incompressible Euler equations. Phys. Fluids A
5, 1725–1746.

Kerr, R. M.
2011
Vortex stretching as a mechanism for quantum kinetic energy decay. Phys. Rev. Lett.
106, 224501.

Kerr, R. M.
2012
Dissipation and enstrophy statistics in turbulence: are the simulations and mathematics converging?
J. Fluid Mech.
700, 1–4.

Kerr, R. M.
2013 Bounds on a singular attractor in Euler using vorticity moments. *Procedia IUTAM, Proceedings of IUTAM Symposium Topological Fluid Dynamics II*, vol 7, pp. 49–58.

Kerr, R. M.
2013a
Swirling, turbulent vortex rings formed from a chain reaction of reconnection events. Phys. Fluids
25, 065101.

Kerr, R. M.
2013b
Bounds for Euler from vorticity moments and line divergence. J. Fluid Mech.
729, R2.

Meneveau, C. & Sreenivasan, K. R.
1991
The multifractal nature of turbulent energy dissipation. J. Fluid Mech.
224, 429–484.

Meneveau, C., Sreenivasan, K. R., Kailasnath, P. & Fan, M. S.
1990
Joint multifractal measures: theory and applications to turbulence. Phys. Rev. A
41, 894–913.

Nelkin, M.
1990
Multifractal scaling of velocity derivatives in turbulence. Phys. Rev. A
42, 7226–7229.

Orszag, S. A. & Patterson, G. S.
1972
Numerical simulation of three-dimensional homogeneous isotropic turbulence. Phys. Rev. Lett.
28, 76–79.

Pandit, R., Perlekar, P. & Ray, S. S.
2009
Statistical properties of turbulence: an overview. Pramana – Journal of Physics
73, 157–191.

Ray, S. S., Mitra, D. & Pandit, R.
2008
The universality of dynamic multiscaling in homogeneous, isotropic Navier–Stokes and passive-scalar turbulence. New J. Phys.
10, 033003.

Ray, S. S., Mitra, D., Perlekar, P. & Pandit, R.
2011
Dynamic multiscaling in two-dimensional fluid turbulence. Phys. Rev. Lett.
107, 184503.

Rogallo, R. S.
1981 Numerical experiments in homogeneous turbulence. *Tech. Mem.* 81835. NASA.

Sahoo, G., Perlekar, P. & Pandit, R.
2011
Systematics of the magnetic-Prandtl-number dependence of homogeneous, isotropic magnetohydrodynamic turbulence. New J. Phys.
13, 013036.

Schumacher, J., Sreenivasan, K. R. & Yakhot, V.
2007
Asymptotic exponents from low-Reynolds-number flows. New J. Phys.
9, 89–107.

Sreenivasan, K. R.
1985
On the fine-scale intermittency of turbulence. J. Fluid Mech.
151, 81–103.

Yakhot, V. & Sreenivasan, K. R.
2004
Towards a dynamical theory of multifractals in turbulence. Physica A
343, 147–155.

Yeung, P. K., Donzis, D. & Sreenivasan, K. R.
2012
Dissipation, enstrophy and pressure statistics in turbulence simulations at high Reynolds numbers. J. Fluid Mech.
700, 5–15.