Skip to main content
×
Home
    • Aa
    • Aa

Vorticity moments in four numerical simulations of the 3D Navier–Stokes equations

  • Diego A. Donzis (a1), John D. Gibbon (a2), Anupam Gupta (a3), Robert M. Kerr (a4), Rahul Pandit (a3) (a5) and Dario Vincenzi (a6)...
Abstract
Abstract

The issue of intermittency in numerical solutions of the 3D Navier–Stokes equations on a periodic box ${[0, L] }^{3} $ is addressed through four sets of numerical simulations that calculate a new set of variables defined by ${D}_{m} (t)= {({ \varpi }_{0}^{- 1} {\Omega }_{m} )}^{{\alpha }_{m} } $ for $1\leq m\leq \infty $ where ${\alpha }_{m} = 2m/ (4m- 3)$ and ${[{\Omega }_{m} (t)] }^{2m} = {L}^{- 3} \int \nolimits _{\mathscr{V}} {\vert \boldsymbol{\omega} \vert }^{2m} \hspace{0.167em} \mathrm{d} V$ with ${\varpi }_{0} = \nu {L}^{- 2} $ . All four simulations unexpectedly show that the ${D}_{m} $ are ordered for $m= 1, \ldots , 9$ such that ${D}_{m+ 1} \lt {D}_{m} $ . Moreover, the ${D}_{m} $ squeeze together such that ${D}_{m+ 1} / {D}_{m} \nearrow 1$ as $m$ increases. The values of ${D}_{1} $ lie far above the values of the rest of the ${D}_{m} $ , giving rise to a suggestion that a depletion of nonlinearity is occurring which could be the cause of Navier–Stokes regularity. The first simulation is of very anisotropic decaying turbulence; the second and third are of decaying isotropic turbulence from random initial conditions and forced isotropic turbulence at fixed Grashof number respectively; the fourth is of very-high-Reynolds-number forced, stationary, isotropic turbulence at up to resolutions of $409{6}^{3} $ .

Copyright
Corresponding author
Email address for correspondence: j.d.gibbon@ic.ac.uk
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

A. Arneodo , R. Benzi , J. Berg , L. Biferale , E. Bodenschatz , A. Busse , E. Calzavarini , B. Castaing , M. Cencini , L. Chevillard , R. T. Fisher , R. Grauer , H. Homann , D. Lamb , A. S. Lanotte , E. Leveque , B. Luethi , J. Mann , N. Mordant , W.-C. Mueller , S. Ott , N. T. Ouellette , J.-F. Pinton , S. B. Pope , S. G. Roux , F. Toschi , H. Xu & P. K. Yeung 2008 Universal intermittent properties of particle trajectories in highly turbulent flows. Phys. Rev. Lett. 100, 254504.

R. Betchov 1956 An inequality concerning the production of vorticity in isotropic turbulence. J. Fluid Mech. 1, 497504.

G. Boffetta , A. Mazzino & A. Vulpiani 2008 Twenty-five years of multifractals in fully developed turbulence: a tribute to Giovanni Paladin. J. Phys. A: Math. Theor. 41, 363001.

M. D. Bustamante & R. M. Kerr 2008 3D Euler about a 2D symmetry plane. Physica D 237, 19121920.

S. Chakraborty , U. Frisch & S. S. Ray 2012 Nelkin scaling for the Burgers equation and the role of high-precision calculations. Phys. Rev. E 85, 015301.

C. R. Doering & C. Foias 2002 Energy dissipation in body-forced turbulence. J. Fluid Mech. 467, 289306.

C. R Doering & J. D. Gibbon 1995 Applied Analysis of the Navier–Stokes Equations. Cambridge University Press.

D. Donzis , K. Sreenivasan & P. K. Yeung 2012 Some results on the Reynolds number scaling of pressure statistics in isotropic turbulence. Physica D 241, 164168.

D. Donzis & P. K. Yeung 2010 Resolution effects and scaling in numerical simulations of passive scalar mixing in turbulence. Physica D 239, 12781287.

D. Donzis , P. K. Yeung & K. Sreenivasan 2008 Dissipation and enstrophy in isotropic turbulence: scaling and resolution effects in direct numerical simulations. Phys. Fluids 20, 045108.

V. Eswaran & S. B. Pope 1988 An examination of forcing in direct numerical simulations of turbulence. Comput. Fluids 16, 257278.

U. Frisch 1995 Turbulence: the Legacy of A. N. Kolmogorov. Cambridge University Press.

J. D. Gibbon 2010 Regularity and singularity in solutions of the three-dimensional Navier–Stokes equations. Proc. R. Soc. A 466, 25872604.

J. D. Gibbon 2011 A hierarchy of length scales for weak solutions of the three-dimensional Navier–Stokes equations. Comm. Math. Sci. 10, 131136.

J. D. Gibbon 2012 Conditional regularity of solutions of the three-dimensional Navier–Stokes equations and implications for intermittency. J. Math. Phys. 53, 115608.

H. G. E. Hentschel & I. Procaccia 1983 The infinite number of generalized dimensions of fractals and strange attractors. Physica D 8, 435444.

D. D. Holm & R. M. Kerr 2007 Helicity in the formation of turbulence. Phys. Fluids 19, 025101.

T. Ishihara , T. Gotoh & Y. Kaneda 2009 Study of high-Reynolds number isotropic turbulence by direct numerical simulation. Annu. Rev. Fluid Mech. 41, 16180.

J. Jimenez , A. Wray , P. G. Saffman & R. S. Rogallo 1993 The structure of intense vorticity in isotropic turbulence. J. Fluid Mech. 255, 6590.

R. M. Kerr 1985 Higher-order derivative correlations and the alignment of small-scale structures in isotropic numerical turbulence. J. Fluid Mech. 153, 3158.

R. M. Kerr 1993 Evidence for a singularity of the three-dimensional incompressible Euler equations. Phys. Fluids A 5, 17251746.

R. M. Kerr 2011 Vortex stretching as a mechanism for quantum kinetic energy decay. Phys. Rev. Lett. 106, 224501.

R. M. Kerr 2012 Dissipation and enstrophy statistics in turbulence: are the simulations and mathematics converging? J. Fluid Mech. 700, 14.

R. M. Kerr 2013a Swirling, turbulent vortex rings formed from a chain reaction of reconnection events. Phys. Fluids 25, 065101.

R. M. Kerr 2013b Bounds for Euler from vorticity moments and line divergence. J. Fluid Mech. 729, R2.

C. Meneveau & K. R. Sreenivasan 1991 The multifractal nature of turbulent energy dissipation. J. Fluid Mech. 224, 429484.

C. Meneveau , K. R. Sreenivasan , P. Kailasnath & M. S. Fan 1990 Joint multifractal measures: theory and applications to turbulence. Phys. Rev. A 41, 894913.

M. Nelkin 1990 Multifractal scaling of velocity derivatives in turbulence. Phys. Rev. A 42, 72267229.

S. A. Orszag & G. S. Patterson 1972 Numerical simulation of three-dimensional homogeneous isotropic turbulence. Phys. Rev. Lett. 28, 7679.

R. Pandit , P. Perlekar & S. S. Ray 2009 Statistical properties of turbulence: an overview. Pramana – Journal of Physics 73, 157191.

S. S. Ray , D. Mitra , P. Perlekar & R. Pandit 2011 Dynamic multiscaling in two-dimensional fluid turbulence. Phys. Rev. Lett. 107, 184503.

G. Sahoo , P. Perlekar & R. Pandit 2011 Systematics of the magnetic-Prandtl-number dependence of homogeneous, isotropic magnetohydrodynamic turbulence. New J. Phys. 13, 013036.

J. Schumacher , K. R. Sreenivasan & V. Yakhot 2007 Asymptotic exponents from low-Reynolds-number flows. New J. Phys. 9, 89107.

K. R. Sreenivasan 1985 On the fine-scale intermittency of turbulence. J. Fluid Mech. 151, 81103.

V. Yakhot & K. R. Sreenivasan 2004 Towards a dynamical theory of multifractals in turbulence. Physica A 343, 147155.

P. K. Yeung , D. Donzis & K. R. Sreenivasan 2012 Dissipation, enstrophy and pressure statistics in turbulence simulations at high Reynolds numbers. J. Fluid Mech. 700, 515.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 30 *
Loading metrics...

Abstract views

Total abstract views: 220 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 25th September 2017. This data will be updated every 24 hours.