Skip to main content Accessibility help
×
Home

Calving and ice-shelf break-up processes investigated by proxy: Antarctic tabular iceberg evolution during northward drift

  • T. Scambos (a1), R. Ross (a2), R. Bauer (a1), Y. Yermolin (a3), P. Skvarca (a3), D. Long (a4), J. Bohlander (a1) and T. Haran (a1)...

Abstract

Using a combination of satellite sensors, field measurements and satellite-uplinked in situ observing stations, we examine the evolution of several large icebergs drifting east of the Antarctic Peninsula towards South Georgia Island. Three styles of calving are observed during drift: ‘rift calvings’, ‘edge wasting’ and ‘rapid disintegration’. Rift calvings exploit large pre-existing fractures generated in the shelf environment and can occur at any stage of drift. Edge wasting is calving of the iceberg perimeter by numerous small edge-parallel, sliver-shaped icebergs, preserving the general shape of the main iceberg as it shrinks. This process is observed only in areas north of the sea-ice edge. Rapid disintegration, where numerous small calvings occur in rapid succession, is consistently associated with indications of surface melt saturation (surface lakes, firn-pit ponding). Freeboard measurements by ICESat indicate substantial increases in ice-thinning rates north of the sea-ice edge (from <10 m a−1 to >30 m a−1), but surface densification is shown to be an important correction (>2 m freeboard loss before the firn saturates). Edge wasting of icebergs in ‘warm’ surface water (sea-ice-free, >−1.8°C) implies a mechanism based on waterline erosion. Rapid disintegration (‘Larsen B-style’ break-up) is likely due to the effects of surface or saturated-firn water acting on pre-existing crevasses, or on wave- or tidally induced fractures. Changes in microwave backscatter of iceberg firn as icebergs drift into warmer climate and experience increased surface melt suggest a means of predicting when floating ice plates are evolving towards disintegration.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Calving and ice-shelf break-up processes investigated by proxy: Antarctic tabular iceberg evolution during northward drift
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Calving and ice-shelf break-up processes investigated by proxy: Antarctic tabular iceberg evolution during northward drift
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Calving and ice-shelf break-up processes investigated by proxy: Antarctic tabular iceberg evolution during northward drift
      Available formats
      ×

Copyright

References

Hide All
Doake, C.S.M., Corr, H.F.J., Rott, H., Skvarca, P. and Young, N.W.. 1998. Breakup and conditions for stability of the northern Larsen Ice Shelf, Antarctica. Nature, 391(6669), 778780.
Early, D.S. and Long, D.G.. 2001. Image reconstruction and enhanced resolution imaging from irregular samples. IEEE Trans. Geosci. Remote Sens., 39(2), 291302.
Fahnestock, M., Bindschadler, R., Kwok, R. and Jezek, K.. 1993. Greenland ice sheet surface properties and ice dynamics from ERS-1 SAR imagery. Science, 262(5139), 15301534.
Ferrigno, J.G. and Gould, W.G.. 1987. Substantial changes in the coastline of Antarctica revealed by satellite imagery. Polar Rec., 23(146), 577583.
Gladstone, R. and Bigg, G.R.. 2002. Satellite tracking of icebergs in the Weddell Sea. Antarct. Sci., 14(3), 278287.
Goodman, D.J., Wadhams, P. and Squire, V.A.. 1980. The flexural response of a tabular ice island to ocean swell. Ann. Glaciol., 1, 2327.
Haran, T.M., Fahnestock, M.A. and Scambos, T.A.. 2002. De-striping of MODIS optical bands for ice sheet mapping and topography. [Abstract C12A-1003.] Eos, 88(47), Fall Meet. Suppl., F317.
Howat, I.M., Joughin, I.R. and Scambos, T.A.. 2007. Rapid changes in ice discharge from Greenland outlet glaciers. Science, 315(5818), 15591561.
Hulbe, C., Scambos, T., Youngberg, T. and Lamb, A.. In press. Patterns of glacier response to disintegration of the Larsen B ice shelf, Antarctic Peninsula. Global Planet. Change.
Jansen, D., Schodlok, M. and Rack, W.. 2007. Basal melting of A-38B: a physical model constrained by satellite observations. Remote Sens. Environ., 111(2–3), 195203.
Joughin, I., Abdalati, W. and Fahnestock, M.A.. 2004. Large fluctuations in speed of Jakobshavn Isbræ, Greenland. Nature, 432(7017), 608610.
Kristensen, M., Squire, V.A. and Moore, S.C.. 1982. Tabular icebergs in ocean waves. Nature, 297(5868), 669671.
Kunz, L.B. and Long, D.G.. 2006. Melt detection in Antarctic ice-shelves using spaceborne scatterometers and radiometers. IEEE Trans. Geosci. Remote Sens., 44(9), 24612469.
Long, D.G., Ballantyne, J. and Bertoia, C.. 2002. Is the number of Antarctic icebergs really increasing? Eos, 83(42), 469, 474.
MacAyeal, D.R., Scambos, T.A., Hulbe, C.L. and Fahnestock, M.A.. 2003. Catastrophic ice-shelf break-up by an ice-shelf-fragmentcapsize mechanism. J. Glaciol., 49(164), 2236.
MacAyeal, D.R. and 13 others. 2006. Transoceanic wave propagation links iceberg calving margins of Antarctica with storms in tropics and Northern Hemisphere. Geophys. Res. Lett., 33(17), L17502. (10.1029/2006GL027235.)
MacAyeal, D.R., Okal, M.H., Thom, J.E., Brunt, K.M., Kim, Y.-J. and Bliss, A.K.. 2008. Tabular iceberg collisions within the coastal regime. J. Glaciol., 54(185), 371386.
Morris, E.M. and Vaughan, D.G.. 2003. Spatial and temporal variation of surface temperature on the Antarctic Peninsula and the limit of viability of ice shelves. In Domack, E., Leventer, A., Burnett, A., Bindschadler, R.A., Convey, P. and Kirby, M., eds. Antarctic Peninsula climate variability: historical and paleo-environmental perspectives. Washington, DC, American Geophysical Union, 6168. (Antarctic Research Series 79.)
Padman, L., Fricker, H.A., Coleman, R., Howard, S. and Erofeeva, L.. 2002. A new tide model for the Antarctic ice shelves and seas. Ann. Glaciol., 34, 247254.
Reeh, N. 1968. On the calving of ice from floating glaciers and ice shelves. J. Glaciol., 7(50), 215232.
Rignot, E., Casassa, G., Gogineni, P., Krabill, W., Rivera, A. and Thomas, R.. 2004. Accelerated ice discharge from the Antarctic Peninsula following the collapse of Larsen B ice shelf. Geophys. Res. Lett., 31(18), L18401. (10.1029/2004GL020697.)
Robertson, R., Padman, L. and Egbert, G.D.. 1998. Tides in the Weddell Sea. In Jacobs, S.S. and Weiss, R. F., eds. Ocean, ice and atmosphere: interactions at the Antarctic continental margin. Washington, DC, American Geophysical Union, 341369. (Antarctic Research Series 75.)
Ross, R., Okal, M., Thom, J. and MacAyeal, D.. 2004. Automatic, satellite-linked ‘webcams’ as a tool in ice-shelf and iceberg research. [Abstract C43C-0236]. Eos, 85(46), Fall Meeting Suppl.
Rott, H., Rack, W., Nagler, T. and Skvarca, P.. 1998. Climatically induced retreat and collapse of northern Larsen Ice Shelf, Antarctic Peninsula. Ann. Glaciol., 27, 8692.
Rott, H., Rack, W., Skvarca, P. and De Angelis, H.. 2002. Northern Larsen Ice Shelf, Antarctica: further retreat after collapse. Ann. Glaciol., 34, 277282.
Scambos, T.A., Hulbe, C., Fahnestock, M. and Bohlander, J.. 2000. The link between climate warming and break-up of ice shelves in the Antarctic Peninsula. J. Glaciol., 46(154), 516530.
Scambos, T., Hulbe, C. and Fahnestock, M.. 2003. Climate-induced ice shelf disintegration in the Antarctic Peninsula. In Domack, E.W., Burnett, A., Leventer, A., Conley, P., Kirby, M. and Bindschadler, R., eds. Antarctic Peninsula climate variability: a historical and paleoenvironmental perspective. Washington, DC, American Geophysical Union, 7992. (Antarctic Research Series 79.)
Scambos, T.A., Bohlander, J.A., Shuman, C.A. and Skvarca, P.. 2004. Glacier acceleration and thinning after ice shelf collapse in the Larsen B embayment, Antarctica. Geophys. Res. Lett., 31(18), L18402. (10.1029/2004GL020670.)
Scambos, T., Sergienko, O., Sargent, A., MacAyeal, D. and Fastook, J.. 2005. ICESat profiles of tabular iceberg margins and iceberg break-up at low latitudes. Geophys. Res. Lett., 32(23), L23S09. (10.1029/2005GL023802.)
Shepherd, A., Wingham, D., Payne, T. and Skvarca, P.. 2003. Larsen ice shelf has progressively thinned. Science, 302(5646), 856859.
Skvarca, P. and García, M.J.. 1993. Deriva del témpano tabular Filchner 1986A. In Segundas Jornadas de Comunicaciones sobre Investigaciones Antárticas. Buenos Aires, Consejo Nacional de Investigaciones Cientificas y Tecnicas. Instituto Antartico Argentino, 105109.
Squire, V.A. 2007. Of ocean waves and sea-ice revisited. Cold Reg. Sci. Technol., 49(2), 110133.
Swithinbank, C., McClain, P. and Little, P.. 1977. Drift tracks of Antarctic icebergs. Polar Rec., 18(116), 495501.
Thomas, R.H. 2004. Force-perturbation analysis of recent thinning and acceleration of Jakobshavn Isbræ, Greenland. J. Glaciol., 50(168), 5766.
Thorpe, S.E., Heywood, K.J., Brandon, M.A. and Stevens, D.P.. 2002. Variability of the southern Antarctic Circumpolar Current front north of South Georgia. J. Mar. Systems, 37(1–3), 87105.
Van der Veen, C.J. 2007. Fracture propagation as means of rapidly transferring surface meltwater to the base of glaciers. Geophys. Res. Lett., 34(1), L01501. (10.1029/2006GL028385.)
Vaughan, D.G. and Doake, C.S.M.. 1996. Recent atmospheric warming and retreat of ice shelves on the Antarctic Peninsula. Nature, 379(6563), 328331.
Vaughan, D.G., Mantripp, D.R., Sievers, J. and Doake, C.S.M.. 1993. A synthesis of remote sensing data on Wilkins Ice Shelf, Antarctica. Ann. Glaciol., 17, 211218.
Weertman, J. 1973. Can a water-filled crevasse reach the bottom surface of a glacier? IASH Publ. 95 (Symposium at Cambridge 1969 – Hydrology of Glaciers), 139145.
Wordie, J.M. and Kemp, S.. 1944. Observations on certain Antarctic icebergs. Polar Times, 18, 15.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed