Skip to main content
×
×
Home

Connected subglacial lake activity on lower Mercer and Whillans Ice Streams, West Antarctica, 2003–2008

  • Helen Amanda Fricker (a1) and Ted Scambos (a2)
Abstract

We examine patterns of localized surface elevation change in lower Mercer and Whillans Ice Streams, West Antarctica, which we interpret as subglacial water movement through a system of lakes and channels. We detect and measure the lake activity using repeat-track laser altimetry from ICESat and image differencing from MODIS image pairs. A hydrostatic-potential map for the region shows that the lakes are distributed across three distinct hydrologic regimes. Our analysis shows that, within these regimes, some of the subglacial lakes appear to be linked, with drainage events in one reservoir causing filling and follow-on drainage in adjacent lakes. We also observe changes near ice raft ‘a’ in lower Whillans Ice Stream, and interpret them as evidence of subglacial water and other changes at the bed. The study provides quantitative information about the properties of this complex subglacial hydrologic system, and a relatively unstudied component of ice-sheet mass balance: subglacial drainage across the grounding line.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Connected subglacial lake activity on lower Mercer and Whillans Ice Streams, West Antarctica, 2003–2008
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Connected subglacial lake activity on lower Mercer and Whillans Ice Streams, West Antarctica, 2003–2008
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Connected subglacial lake activity on lower Mercer and Whillans Ice Streams, West Antarctica, 2003–2008
      Available formats
      ×
Copyright
References
Hide All
Alley, R.B. 1993. In search of ice-stream sticky spots. J. Glaciol., 39(133), 447454.
Bell, R.E., Studinger, M., Shuman, C.A., Fahnestock, M.A. and Joughin, I.. 2007. Large subglacial lakes in East Antarctica at the onset of fast-flowing ice streams. Nature, 445(7130), 904907.
Bindschadler, R.A. and Vornberger, P.L.. 1994. Detailed elevation map of Ice Stream C, Antarctica, using satellite imagery and airborne radar. Ann. Glaciol., 20, 327335.
Bindschadler, R.A., King, M.A., Alley, R.B., Anandakrishnan, S. and Padman, L.. 2003. Tidally controlled stick–slip discharge of a West Antarctic ice stream. Science, 301(5636), 10871089.
Carter, S.P., Blankenship, D.D., Peters, M.F., Young, D.A., Holt, J.W. and Morse, D.L.. 2007. Radar-based subglacial lake classification in Antarctica. Geochem . Geophys. Geosyst., 8(3), Q03016. (10.1029/2006GC001408.)
Carter, S.P., Blankenship, D.D., Young, D.A., Peters, M.E., Holt, J.W. and Siegert, M.J.. In press. Dynamic distributed drainage implied by the flow evolution of the 1996–1998 Adventure Trench subglacial outburst flood. Earth Planet. Sci. Lett.
Engelhardt, H., Humphrey, N., Kamb, B. and Fahnestock, M.. 1990. Physical conditions at the base of a fast moving Antarctic ice stream. Science, 248(4951), 5759.
Fricker, H.A. 2008. Glaciology: water slide. Nature Geosci., 1(12), 809816.
Fricker, H.A. and Padman, L.. 2006. Ice shelf grounding zone structure from ICESat laser altimetry. Geophys. Res. Lett., 33(15), L15502. (10.1029/2006GL026907.)
Fricker, H.A., Borsa, A., Minster, B., Carabajal, C., Quinn, K. and Bills, B.. 2005. Assessment of ICESat performance at the salar de Uyuni, Bolivia. Geophys. Res. Lett., 32(21), L21S06 (10.1029/2005GL023423.)
Fricker, H.A., Scambos, T., Bindschadler, R. and Padman, L.. 2007. An active subglacial water system in West Antarctica mapped from space. Science, 315 (5818), 15441548.
Goodwin, I.D. 1988. The nature and origin of a jökulhlaup near Casey Station, Antarctica. J. Glaciol., 34(116), 95101.
Gray, L., Joughin, I., Tulaczyk, S., Spikes, V.B., Bindschadler, R. and Jezek, K.. 2005. Evidence for subglacial water transport in the West Antarctic Ice Sheet through three-dimensional satellite radar interferometry. Geophys. Res. Lett., 32(3), L03501. (10.1029/2004GL021387.)
Haran, T.M., Fahnestock, M.A. and Scambos, T.A.. 2002. De-striping of MODIS optical bands for ice sheet mapping and topography. [Abstract C12A-1003.] Eos, 88(47), Fall Meet. Suppl., 317.
Haran, T.M., Scambos, T.A., Fahnestock, M.A., Yi, D. and Zwally, H.J.. 2006. A digital elevation model of west Antarctica from MODIS and ICESat: method, accuracy, and applications. [Abstract C21A-1131.] Eos, 87(52), Fall Meet. Suppl.
Iken, A. and Bindschadler, R.A.. 1986. Combined measurements of subglacial water pressure and surface velocity of Findelen-gletscher, Switzerland: conclusions about drainage system and sliding mechanism. J. Glaciol., 32(110), 101119.
Joughin, I.R., Tulaczyk, S. and Engelhardt, H.F.. 2003. Basal melt beneath Whillans Ice Stream and Ice Streams A and C, West Antarctica. Ann. Glaciol., 36, 257262.
Kamb, B. 2001. Basal zone of the West Antarctic ice streams and its role in lubrication of their rapid motion. In Alley, R.B. and Bindschadler, R.A., eds. The West Antarctic ice sheet: behavior and environment. Washington, DC, American Geophysical Union, 157199. (Antarctic Research Series 77.)
Ng, F. and Liu, S.. In press. Temporal dynamics of a jökulhlaup system. J. Glaciol., 55(191).
Robin, G.de Q., Swithinbank, C.W.M. and Smith, B.M.E.. 1970. Radio echo exploration of the Antarctic ice sheet. IASH Publ. 86 (Symposium at Hanover 1968 – Antarctic Glaciological Exploration (ISAGE)), 97115.
Scambos, T.A. and Fahnestock, M.A.. 1998. Improving digital elevation models over ice sheets using AVHRR-based photoclinometry. J. Glaciol., 44(146), 97103.
Scambos, T.A., Haran, T.M., Fahnestock, M.A., Painter, T.H. and Bohlander, J.. 2007. MODIS-based Mosaic of Antarctica (MOA) data sets: continent-wide surface morphology and snow grain size. Remote Sens. Environ., 111(2–3), 242257.
Sergienko, O.V., MacAyeal, D.R. and Bindschadler, R.A.. 2007. Causes of sudden, short-term changes in ice-stream surface elevation. Geophys. Res. Lett., 34(22), L22503. (10.1029/2007GL031775.)
Shabtaie, S. and Bentley, C.R.. 1987a. Correction to ‘West Antarctic ice streams draining into the Ross Ice Shelf: configuration and mass balance’. J. Geophys. Res., 92(B9), 9451.
Shabtaie, S. and Bentley, C.R.. 1987b. West Antarctic ice streams draining into the Ross Ice Shelf: configuration and mass balance. J. Geophys. Res., 92(B2), 13111336.
Shabtaie, S. and Bentley, C.R.. 1988. Ice-thickness map of the West Antarctic ice streams by radar sounding. Ann. Glaciol., 11, 126136.
Shreve, R.L. 1972. Movement of water in glaciers. J. Glaciol., 11(62), 205214.
Shuman, C.A. and 6 others. 2006. ICESat Antarctic elevation data: preliminary precision and accuracy assessment. Geophys. Res. Lett., 33(7), L07501. (10.1029/2005GL025227.)
Siegert, M.J. and Bamber, J.L.. 2000. Correspondence. Subglacial water at the heads of Antarctic ice-stream tributaries. J. Glaciol., 46(155), 702703.
Siegert, M.J., Carter, S., Tabacco, I., Popov, S. and Blankenship, D.D.. 2005. A revised inventory of Antarctic subglacial lakes. Antarct. Sci., 17(3), 453460.
Spikes, V.B., Csathó, B.M., Hamilton, G.S. and Whillans, I.M.. 2003. Thickness changes on Whillans Ice Stream and Ice Stream C, West Antarctica, derived from laser altimeter measurements. J. Glaciol. , 49(165), 223230.
Stearns, L.A., Smith, B.E. and Hamilton, G.S.. 2008. Increased flow speed on a large East Antarctic outlet glacier caused by subglacial floods. Nature Geosci., 1(12), 827831.
Sun, X., Abshire, J.B. and Yi, D.. 2003. Geoscience laser altimeter system (GLAS) – characteristics and performance of the altimeter receiver. [Abstr. C32A-0432.] Eos, 84(46), Fall Meet. Suppl.
Truffer, M. and Fahnestock, M.. 2007. Climate change: rethinking ice sheet time scales. Science, 315(5818), 15081510.
Tulaczyk, S., Pettersson, R., Quintana-Krupinski, N., Fricker, H., Joughin, I. and Smith, B.. 2008. Do dynamic subglacial lakes impact temporal behavior of fast-flowing ice streams? GPS and radar investigations on two West Antarctic ice streams. Geophys. Res. Abstr. 10, 11565. (1607-7962/gra/EGU2008-A-11565.)
Vaughan, D.G. and Arthern, R.. 2007. Climate change: why is it hard to predict the future of ice sheets? Science, 315(5818), 15031504.
Wiens, D.A., Anandakrishnan, S., Wineberry, J.P. and King, M.A.. 2008. Simultaneous teleseismic and geodetic observations of the stick–slip motion of an Antarctic ice stream. Nature, 453(7196), 770774.
Wingham, D.J., Siegert, M.J., Shepherd, A. and Muir, A.S.. 2006. Rapid discharge connects Antarctic subglacial lakes. Nature, 440(7087), 10331036.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 8
Total number of PDF views: 59 *
Loading metrics...

Abstract views

Total abstract views: 111 *
Loading metrics...

* Views captured on Cambridge Core between 8th September 2017 - 17th August 2018. This data will be updated every 24 hours.