Skip to main content Accessibility help
×
Home

Continent-wide estimates of Antarctic strain rates from Landsat 8-derived velocity grids

  • KAREN E. ALLEY (a1), TED A. SCAMBOS (a1), ROBERT S. ANDERSON (a2), HARIHAR RAJARAM (a3), ALLEN POPE (a1) and TERRY M. HARAN (a1)...

Abstract

Strain rates are fundamental measures of ice flow and are used in a wide variety of glaciological applications including investigations of bed properties, calculations of basal mass balance on ice shelves, and constraints on ice rheological models. However, despite their extensive application, strain rates are calculated using a variety of methods and length scales and the details are often not specified. In this study, we compare the results of nominal and logarithmic strain-rate calculations based on a satellite-derived velocity field of the Antarctic ice sheet generated from Landsat 8 satellite data. Our comparison highlights the differences between the two common approaches in the glaciological literature. We evaluate the errors introduced by each approach and their impacts on the results. We also demonstrate the importance of choosing and specifying a length scale over which strain-rate calculations are made, which can strongly influence other derived quantities such as basal mass balance on ice shelves. Finally, we present strain-rate data products calculated using an approximate viscous length-scale with satellite observations of ice velocity for the Antarctic continent.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Continent-wide estimates of Antarctic strain rates from Landsat 8-derived velocity grids
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Continent-wide estimates of Antarctic strain rates from Landsat 8-derived velocity grids
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Continent-wide estimates of Antarctic strain rates from Landsat 8-derived velocity grids
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Correspondence: Karen E. Alley <kalley@wooster.edu>

References

Hide All
Alley, RB and 7 others (2008) A simple law for ice-shelf calving. Science, 322(5906), 13441344 (doi: 10.1126/science.1162543)
Ambach, DDW (1968) The formation of crevasses in relation to the measured distribution of strain-rates and stresses. Arch. Meteorol. Geophys. Bioklimatol. B, 17(1), 7887 (doi: 10.1007/BF02250793)
Benn, DI, Hulton, N and Mottram, RH (2007) ‘Calving laws’, ‘sliding laws’ and the stability of tidewater glaciers. Ann. Glaciol., 46(1), 123130 (doi: 10.3189/172756407782871161)
Bindschadler, R and Vornberger, P (1996) Surface velocity and mass balance of Ice Streams D and E, West Antarctica. J. Glaciol., 42(142), 461475 (doi: 10.1017/s0022143000003452)
Burgess, EW, Forster, RR, Larsen, CF and Braun, M (2012) Surge dynamics on Bering Glacier, Alaska, in 2008–2011. Cryosphere, 6(6), 12511262 (doi: 10.5194/tc-6-1251-2012)
Chuter, SJ and Bamber, JL (2015) Antarctic ice shelf thickness from CryoSat-2 radar altimetry. Geophys. Res. Lett., 42(24), 1072110729 (doi: 10.1002/2015GL066515)
Cuffey, KM and Paterson, WSB (2010) The physics of glaciers, 4th edn. Elsevier, Burlington, MA
Doake, CSM, Corr, HFJ, Rott, H, Skvarca, P and Young, NW (1998) Breakup and conditions for stability of the northern Larsen Ice Shelf, Antarctica. Nature, 391(6669), 778780 (doi: 10.1038/35832)
Fahnestock, M and 5 others (2016) Rapid large-area mapping of ice flow using Landsat 8. Remote Sens. Environ., 185, 8494 (doi: 10.1016/j.rse.2015.11.023)
Fretwell, P, Pritchard, HD and Vaughan, DG (2012) Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. Cryosphere, 6(5), 43054361, doi: 10.5194/tcd-6-4305-2012
Glen, JW (1955) The creep of polycrystalline ice. Proc. R. Soc. A: Math. Phys. Eng. Sci., 228(1175), 519538 (doi: 10.1098/rspa.1955.0066)
Gudmundsson, GH (2013) Ice-shelf buttressing and the stability of marine ice sheets. Cryosphere, 7(2), 647655 (doi: 10.5194/tc-7-647-2013)
Howat, IMS, Tulaczyk, S, Waddington, E and Björnsson, H (2008) Dynamic controls on glacier basal motion inferred from surface ice motion. J. Geophys. Res. Earth Surf., 113(F3) (doi: 10.1029/2007JF000925)
Jenkins, A and Doake, CSM (1991) Ice-ocean interaction on Ronne Ice Shelf, Antarctica. J. Geophys. Res., 96(C1), 791813 (doi: 10.1029/90JC01952)
Kulessa, B, Jansen, D, Luckman, AJ, King, EC and Sammonds, PR (2014) Marine ice regulates the future stability of a large Antarctic ice shelf. Nat. Commun., 5, 3707 (doi: 10.1038/ncomms4707)
Murray, T, Strozzi, T, Luckman, A, Jiskoot, H and Christakos, P (2003) Is there a single surge mechanism? Contrasts in dynamics between glacier surges in Svalbard and other regions. J. Geophys. Res., 108(B5), 2237 (doi: 10.1029/2002JB001906)
Nye, JF (1953) The flow law of ice from measurements in Glacier tunnels, laboratory experiments and the Jungfraufirn Borehole experiment. Proc. R. Soc. A: Math. Phys. Eng. Sci., 219(1139), 477489 (doi: 10.1098/rspa.1953.0161)
Nye, JF (1959) A method of determining the strain-rate tensor at the surface of a glacier. J. Glaciol., Cambridge Austerdalsbre Expedition (Paper No. 6), 3(25), 409419
Paolo, FS, Fricker, HA and Padman, L (2015) Volume loss from Antarctic ice shelves is accelerating. Science, 348(6232), 327331 (doi: 10.1126/science.aaa0940)
Paterson, WSB and Savage, JC (1963) Geometry and movement of the Athabasca Glacier. J. Geophys. Res., 68(15), 45134520 (doi: 10.1029/jz068i015p04513)
Rees, D (2006) Basic engineering plasticity. Elsevier, London.
Rignot, E, Mouginot, J and Scheuchl, B (2011) Ice flow of the Antarctic Ice Sheet. Science, 333(6048), 14271430 (doi: 10.1126/science.1208336)
Rignot, E, Jacobs, S, Mouginot, J and Scheuchl, B (2013) Ice-shelf melting around Antarctica. Science, 341(6143), 266270 (doi: 10.1126/science.1235798)
Scherler, D, Leprince, S and Strecker, M (2008) Glacier-surface velocities in alpine terrain from optical satellite imagery – accuracy improvement and quality assessment. Remote Sens. Environ., 112(10), 38063819 (doi: 10.1016/j.rse.2008.05.018)
Van Wessem, JM and 13 others (2014) Improved representation of East Antarctic surface mass balance in a regional atmospheric climate model. J. Glaciol., 60(222), 761770 (doi: 10.3189/2014JoG14J051)
White, FM (1999) Fluid mechanics, 4th edn. McGraw-Hill Publishing, New York, NY.

Keywords

Type Description Title
WORD
Supplementary materials

Alley et al. supplementary material
Alley et al. supplementary material 1

 Word (176 KB)
176 KB
UNKNOWN
Supplementary materials

Alley et al. supplementary material
Alley et al. supplementary material 2

 Unknown (1 KB)
1 KB
UNKNOWN
Supplementary materials

Alley et al. supplementary material
Alley et al. supplementary material 3

 Unknown (19 KB)
19 KB
PDF
Supplementary materials

Alley et al. supplementary material
Alley et al. supplementary material 4

 PDF (24 KB)
24 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed