Skip to main content
×
×
Home

How sensitive are mountain glaciers to climate change? Insights from a block model

  • EVIATAR BACH (a1) (a2), VALENTINA RADIĆ (a1) and CHRISTIAN SCHOOF (a1)
Abstract

Simple models of glacier volume evolution are important in understanding features of glacier response to climate change, due to the scarcity of data adequate for running more complex models on a global scale. Two quantities of interest in a glacier's response to climate changes are its response time and its volume sensitivity to changes in the equilibrium line altitude (ELA). We derive a simplified, computationally inexpensive model of glacier volume evolution based on a block model with volume–area–length scaling. After analyzing its steady-state properties, we apply the model to each mountain glacier worldwide and estimate regionally differentiated response times and sensitivities to ELA changes. We use a statistical method from the family of global sensitivity analysis methods to determine the glacier quantities, geometric and climatic, that most influence the model output. The response time is dominated by the climatic setting reflected in the mass-balance gradient in the ablation zone, followed by the surface slope, while volume sensitivity is mainly affected by glacier size, followed by the surface slope.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      How sensitive are mountain glaciers to climate change? Insights from a block model
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      How sensitive are mountain glaciers to climate change? Insights from a block model
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      How sensitive are mountain glaciers to climate change? Insights from a block model
      Available formats
      ×
Copyright
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Corresponding author
Correspondence: Eviatar Bach <eviatarbach@protonmail.com>
References
Hide All
Bahr, DB, Meier, MF and Peckham, SD (1997) The physical basis of glacier volume-area scaling. J. Geophys. Res.: Solid Earth, 102(B9), 2035520362, ISSN (doi: 10.1029/97JB01696)
Bahr, DB, Pfeffer, WT, Sassolas, C and Meier, MF (1998) Response time of glaciers as a function of size and mass balance: 1. Theory. J. Geophys. Res.: Solid Earth, 103(B5), 97779782, ISSN (doi: 10.1029/98JB00507)
Bahr, DB, Pfeffer, WT and Kaser, G (2015) A review of volume-area scaling of glaciers. Rev. Geophys., 53(1), ISSN (doi: 10.1002/2014RG000470)
Braithwaite, RJ (2015) From Doktor Kurowski's Schneegrenze to our modern glacier ELA. Cryosphere, 9(6), 21352148, ISSN (doi: 10.5194/tc-9-2135-2015)
Braithwaite, RJ and Raper, SCB (2009) Estimating ELA from glacier inventory data. Ann. Glaciol., 50(53), 127132, ISSN (doi: 10.3189/172756410790595930)
Cannon, AJ, Neilsen, D and Taylor, B (2012) Lapse rate adjustments of gridded surface temperature normals in an area of complex terrain: atmospheric reanalysis versus statistical up-sampling. Atmos. Ocean, 50(1), 916, ISSN (doi: 10.1080/07055900.2011.649035)
Clarke, GKC, Jarosch, AH, Anslow, FS, Radić, V and Menounos, B (2015) Projected deglaciation of western Canada in the twenty-first century. Nat. Geosci., 8(5), 372377, ISSN . (doi: 10.1038/ngeo2407)
Cuffey, KM and Paterson, WSB (2010) The physics of glaciers, 4th edn. Academic Press, Burlington, MA, ISBN 978-0-12-369461-4
Da Veiga, S (2015) Global sensitivity analysis with dependence measures. J. Stat. Comput. Simul., 85(7), 12831305, ISSN (doi: 10.1080/00949655.2014.945932)
Edelman, A and Murakami, H (1995) Polynomial roots from companion matrix eigenvalues. Math. Comput., 64(210), 763776 ISSN (doi: 10.1090/S0025-5718-1995-1262279-2)
Giesen, RH (2009) The ice cap Hardangerjøkulen in the past, present and future climate (PhD thesis, Utrecht University) (doi: 978-90-393-5185-7)
Haeberli, W and Hoelzle, M (1995) Application of inventory data for estimating characteristics of and regional climate-change effects on mountain glaciers: a pilot study with the European Alps. Ann. Glaciol., 21, 206212 ISSN (doi: 10.1017/S0260305500015834)
Harris, I, Jones, PD, Osborn, TJ and Lister, DH (2014) Updated high-resolution grids of monthly climatic observations – the CRU TS3.10 Dataset. Int. J. Climatol., 34(3), 623642, ISSN (doi: 10.1002/joc.3711)
Harrison, WD (2013) How do glaciers respond to climate? Perspectives from the simplest models. J. Glaciol., 59(217), 949960, ISSN (doi: 10.3189/2013JoG13J048)
Harrison, WD, Raymond, CF, Echelmeyer, KA and Krimmel, RM (2003) A macroscopic approach to glacier dynamics. J. Glaciol., 49(164), 1321, ISSN (doi: 10.3189/172756503781830917)
Huss, M and Farinotti, D (2012) Distributed ice thickness and volume of all glaciers around the globe. J. Geophys. Res.: Earth Surface, 117(F4), F04010, ISSN (doi: 10.1029/2012JF002523)
Huss, M and Fischer, M (2016) Sensitivity of very small glaciers in the Swiss Alps to future climate change. Front. Earth Sci., 4, ISSN (doi: 10.3389/feart.2016.00034)
Huss, M and Hock, R (2015) A new model for global glacier change and sea-level rise. Front. Earth Sci., 3. ISSN (doi: 10.3389/feart.2015.00054)
Jóhannesson, T, Raymond, CF and Waddington, EDA (1989) Simple method for determining the response time of glaciers. In Glacier fluctuations and climatic change, glaciology and quaternary geology. Springer, Dordrecht, 343352, ISBN 978-90-481-4040-4 978-94-015-7823-3 (doi: 10.1007/978-94-015-7823-3_22)
Kalnay, E and 21 others (1996) The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc., 77(3), 437471, ISSN (doi: 10.1175/1520-0477(1996)077¡0437:TNYRP¿2.0.CO;2)
LEBIGOT, EO (2016) uncertainties: a Python package for calculations with uncertainties
Lowe, JA and Gregory, JM (2010) A sea of uncertainty. Nat. Rep. Clim. Change (1004), 4243 (doi: 10.1038/climate.2010.30)
Machguth, H and Huss, M (2014) The length of the world's glaciers – a new approach for the global calculation of center lines. Cryosphere, 8(5), 17411755, ISSN (doi: 10.5194/tc-8-1741-2014)
Marzeion, B, Jarosch, AH and Hofer, M (2012) Past and future sea-level change from the surface mass balance of glaciers. Cryosphere, 6(6), 12951322, ISSN (doi: 10.5194/tc-6-1295-2012)
McKinney, W (2010) Data structures for statistical computing in Python. In Proceedings of the 9th Python in Science Conference, SciPy Austin, TX, vol. 445, 5156
Mernild, SH, Lipscomb, WH, Bahr, DB, Radić, V and Zemp, M (2013), Global glacier changes: a revised assessment of committed mass losses and sampling uncertainties. Cryosphere, 7(5), 15651577, ISSN (doi: 10.5194/tc-7-1565-2013)
Nye, JF (1951) The flow of glaciers and ice-sheets as a problem in plasticity. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 207(1091), 554572, ISSN (doi: 10.2307/98631)
Oerlemans, J (2008) Minimal glacier models. Igitur. ISBN 978-90-6701-022-1
Pfeffer, WT, Sassolas, C, Bahr, DB and Meier, MF (1998) Response time of glaciers as a function of size and mass balance: 2. Numerical experiments. J. Geophys. Res.: Solid Earth, 103(B5), 97839789, ISSN (doi: 10.1029/98JB00508)
Pfeffer, WT and 19 others (2014) The Randolph Glacier Inventory: a globally complete inventory of glaciers. J. Glaciol., 60(221), 537552, ISSN (doi: 10.3189/2014JoG13J176)
Pujol, G, Iooss, B and Boumhaout, AJ (2017) sensitivity: global sensitivity analysis of model outputs.
Radić, V and Hock, R (2011) Regionally differentiated contribution of mountain glaciers and ice caps to future sea-level rise. Nat. Geosci., 4(2), 9194, ISSN (doi: 10.1038/ngeo1052)
Radić, V and Hock, R (2014) Glaciers in the Earth's hydrological cycle: assessments of glacier mass and runoff changes on global and regional scales. Surv. Geophys., 35(3), 813837, ISSN (doi: 10.1007/s10712-013-9262-y)
Radić, V and 5 others (2014) Regional and global projections of twenty-first century glacier mass changes in response to climate scenarios from global climate models. Clim. Dyn., 42(1–2), 3758, ISSN . (doi: 10.1007/s00382-013-1719-7).
Raper, SCB and Braithwaite, RJ (2009) Glacier volume response time and its links to climate and topography based on a conceptual model of glacier hypsometry. Cryosphere, 3(2), 183194, ISSN . (doi: 10.5194/tc-3-183-2009)
Rea, BR (2009) Defining modern day AABRs and their use in glacier-climate reconstructions. Quat. Sci. Rev., 28(3), 237248, ISSN (doi: 10.1016/j.quascirev.2008.10.011)
Roe, GH (2011) What do glaciers tell us about climate variability and climate change? J. Glaciol., 57(203), 567578, ISSN (doi: 10.3189/002214311796905640)
Roe, GH and Baker, MB (2014) Glacier response to climate perturbations: an accurate linear geometric model. J. Glaciol., 60(222), 670684, ISSN (doi: 10.3189/2014JoG14J016)
Saltelli, A and 7 others (2008) Global sensitivity analysis: the primer. John Wiley & Sons, Ltd., ISBN 978-0-470-72518-4 (doi: 10.1002/9780470725184))
Sobol', IM (2001) Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math. Comput. Simul., 55(1), 271280, ISSN (doi: 10.1016/S0378-4754(00)00270-6)
Song, L, Smola, A, Gretton, A, Bedo, J and Borgwardt, K (2012) Feature selection via dependence maximization. J. Mach. Learn. Res., 13, 13931434, ISSN
van der Walt, S, Colbert, SC and Varoquaux, G (2011) The NumPy array: a structure for efficient numerical computation. Comput. Sci. Eng., 13(2), 2230, ISSN (doi: 10.1109/MCSE.2011.37)
Wong, PP and 7 others (2014) Coastal systems and low-lying areas. In Field, CB, Barros, VR, Dokken, DJ, Mach, KJ, Mastrandrea, MD, Bilir, TE, Chatterjee, M, Ebi, KL, Estrada, YO, Genova, RC, Girma, B, Kissel, ES, Levy, AN, MacCracken, S, Mastrandrea, PR and White, LL, eds. Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK and New York, NY, USA, 361409
World Glacier Monitoring Service (2017) Fluctuations of Glaciers Database (doi: 10.5904/wgms-fog-2017-06)
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score