Skip to main content
×
×
Home

Impact of two conceptual precipitation downscaling schemes on mass-balance modeling of Gran Campo Nevado ice cap, Patagonia

  • Stephanie Weidemann (a1), Tobias Sauter (a1) (a2), Lars Schneider (a1) and Christoph Schneider (a1)
Abstract
Abstract

Precipitation downscaling in mountainous regions with sparse station data is challenging, but needed to link global climate datasets with high-resolution glacier models. In this study, we apply a linear orographic precipitation model (OPM) to generate orographic precipitation fields for mass-balance studies at Gran Campo Nevado (GCN), Southern Patagonia. The OPM is driven by large-scale atmospheric input variables taken from the reanalysis data of the US National Centers for Environmental Prediction and the US National Center for Atmospheric Research. The orographic precipitation fields are compared to precipitation fields assessed by a linear precipitation gradient, widely used in earlier mass-balance studies of GCN and elsewhere. Both downscaling methods are implemented into a degree-day model to analyze the sensitivity of mass-balance modeling to different precipitation inputs. Significant spatio-temporal differences are found, particularly in the summit region. The mass-balance modeling shows high sensitivity to the different precipitation distribution methods, leading to differences in the mass-balance gradients on the east side of GCN.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Impact of two conceptual precipitation downscaling schemes on mass-balance modeling of Gran Campo Nevado ice cap, Patagonia
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Impact of two conceptual precipitation downscaling schemes on mass-balance modeling of Gran Campo Nevado ice cap, Patagonia
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Impact of two conceptual precipitation downscaling schemes on mass-balance modeling of Gran Campo Nevado ice cap, Patagonia
      Available formats
      ×
Copyright
References
Hide All
Alpert P (1986) Mesoscale indexing of the distribution of orographic precipitation over high mountains. J. Climate Appl. Meteorol., 25(4), 532545 (doi: 10.1175/1520-0450(1986)025<0532:MIOTDO>2.0.CO;2)
Aniya M (1999) Recent glacier variations of the Hielo Patagónicos, South America, and their contribution to sea-level change. Arct. Antarct. Alp. Res., 31(2), 165173
Barstad I and Smith RB (2005) Evaluation of an orographic precipitation model. J. Hydromet., 6(1), 8599 (doi: 10.1175/JHM-404.1)
Braithwaite RJ (1981) On glacier energy balance, ablation, and air temperature. J. Glaciol., 27(97), 381391
Braithwaite RJ and Zhang Y (2000) Sensitivity of mass balance of five Swiss glaciers to temperature changes assessed by tuning a degree-day model. J. Glaciol., 46(152), 714 (doi: 10.3189/172756500781833511)
Buttstädt M, Möller M, Iturraspe R and Schneider C (2009) Mass balance evolution of Martial Este Glacier, Tierra del Fuego (Argentina) for the period 1960–2099. Adv. Geosci., 22, 117124 (doi: 10.5194/adgeo-22-117-2009)
Caroletti GN and Barstad I (2010) An assessment of future extreme precipitation in western Norway using a linear model. Hydrol. Earth Syst. Sci., 14(11), 23292341 (doi: 10.5194/hess-14-2329- 2010)
Crochet P, Jóhannesson T and Jónsson T (2007) Estimating the spatial distribution of precipitation in Iceland using a linear model of orographic precipitation. J. Hydromet., 8(6), 12851306 (doi: 10.1175/2007JHM795.1)
Daly C, Neilson RP and Phillips DL (1994) A statistical–topographic model for mapping climatological precipitation over mountainous terrain. J. Appl. Meteorol., 33(2), 140158 (doi: 10.1175/1520-0450(1994)033<0140:ASTMFM>2.0.CO;2)
Durran DR and Klemp JB (1982) On the effects of moisture on the Brunt–Väisälä frequency. J. Atmos. Sci., 39(10), 21522158 (doi: 10.1175/1520-0469(1982)039<2152:OTEOMO>2.0.CO;2)
Haiden T, Kahlig P, Kerschbaum M and Nobilis F (1990) On the influence of mountains on large-scale precipitation: a deterministic approach towards orographic PMP. Hydrol. Sci. J., 35(5), 501510 (doi: 10.1080/02626669009492454)
Hay LE and Clark MP (2003) Use of statistically and dynamically downscaled atmospheric model output for hydrologic simulations in three mountainous basins in the western United States. J. Hydrol., 282(1–4), 5675 (doi: 10.1016/S0022-1694(03)00252-X)
Hay LE and McCabe GJ (1998) Verification of the Rhea-orographicprecipitation model. J. Am. Water Res. Assoc., 34(1), 103112 (doi: 10.1111/j.1752-1688.1998.tb05963.x)
Hock R (2003) Temperature index melt modelling in mountain areas. J. Hydrol., 282(1–4), 104115 (doi: 10.1016/S0022-1694(03)00257-9)
Huss M, Bauder A, Funk M and Hock R (2008) Determination of the seasonal mass balance of four Alpine glaciers since 1865. J. Geophys. Res., 113(F1), F01015 (doi: 10.1029/2007JF000803)
Hutchinson MF (1998) Interpolation of rainfall data with thin plate smoothing splines – Part II: Analysis of topographic dependence. J. Geogr. Inf. Decis. Anal., 2(2), 161185
Jarosch AH, Anslow FS and Clarke GKC (2012) High-resolution precipitation and temperature downscaling for glacier models. Climate Dyn., 38(1–2), 391409 (doi: 10.1007/s00382-010-0949-1)
Jiang Q (2003) Moist dynamics and orographic precipitation. Tellus A, 55(4), 301316 (doi: 10.1034/j.1600-0870.2003.00025.x)
Jiang Q and Smith RB (2003) Cloud timescales and orographic precipitation. J. Atmos. Sci., 60(13), 15431559 (doi: 10.1175/2995.1)
Jóhannesson T and 14 others (2007) Effect of climate change on hydrology and hydro-resources in Iceland. OS-2007/011. Hydrological Service, National Energy Authority, Reykjavík
Kalnay E and 21 others (1996) The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc., 77(3), 437471 (doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2)
Kunz M and Kottmeier C (2006a) Orographic enhancement of precipitation over low mountain ranges. Part I: Model formulation and idealized simulations. J. Appl. Meteorol. Climatol., 45(8), 10251040 (doi: 10.1175/JAM2389.1)
Kunz M and Kottmeier C (2006b) Orographic enhancement of precipitation over low mountain ranges. Part II: Simulations of heavy precipitation events over southwest Germany. J. Appl. Meteorol. Climatol., 45(8), 10411055 (doi: 10.1175/JAM2390.1)
Kunz M and Wassermann S (2011) Sensitivity of flow dynamics and orographic precipitation to changing ambient conditions in idealised models simulations. Meteorol. Z., 20(2), 199215
Lin Y-L (2007) Mesoscale dynamics. Cambridge University Press, Cambridge
Medina S, Smull BF and Houze RAJ (2005) Cross-barrier flow during orographic precipitation events: results from MAP and IMPROVE. J. Atmos. Sci., 62(10), 35803598 (doi: 10.1175/JAS3554.1)
Miller A (1976) The climate of Chile. In Schwerdtfeger W ed. Climates of Central and South America. (World Survey of Climatology 12) Elsevier, New York, 113145
Mölg T and Kaser G (2011) A new approach to resolving climate–cryosphere relations: downscaling climate dynamics to glacier-scale mass and energy balance without statistical scale linking. J. Geophys. Res., 116(D16), D16101 (doi: 10.1029/2011JD015669)
Möller M and Schneider C (2008) Climate sensitivity and mass-balance evolution of Gran Campo Nevado ice cap, southwest Patagonia. Ann. Glaciol., 48, 3242 (doi: 10.3189/172756408784700626)
Möller M, Schneider C and Kilian R (2007) Glacier change and climate forcing in recent decades at Gran Campo Nevado, southernmost Patagonia. Ann. Glaciol., 46, 136144 (doi: 10.3189/172756407782871530)
Neiman PJ, Ralph FM, White AB, Kingsmill DE and Persson POG (2002) The statistical relationship between upslope flow and rainfall in California’s coastal mountains: observations during CALJET. Mon. Weather Rev., 130(6), 14681492 (doi: 10.1175/1520-0493(2002)130<1468:TSRBUF>2.0.CO;2)
Oerlemans J (1992) Climate sensitivity of glaciers in southern Norway: application of an energy-balance model to Nigardsbreen, Hellstugubreen and Alfotbreen. J. Glaciol., 38(129), 223232
Pandey GR, Cayan DR, Dettinger MD and Georgakakos KP (2000) A hybrid orographic plus statistical model for downscaling daily precipitation in northern California. J. Hydromet., 1(6), 491506 (doi: 10.1175/1525-7541(2000)001<0491:AHOPSM>2.0.CO;2)
Panofsky HA and Brier GW (1968) Some applications of statistics to meteorology. Pennsylvania State University Press, University Park, PA
Paruelo JM, Beltrán A, Jobbágy E, Sala OE and Golluscio RA (1998) The climate of Patagonia: general patterns and controls on biotic processes. Ecol. Austral, 8(2), 75307
Porter SC and Santana A (2003) Rapid 20th century retreat of Ventisquero Marinelli in the Cordillera Darwin Icefield. An. Inst. Patagonia, 31, 1726
Radić V and Hock R (2006) Modeling future glacier mass balance and volume changes using ERA-40 reanalysis and climate models: sensitivity study at Storglaciären, Sweden. J. Geophys. Res., 111(F3), F03003 (doi: 10.1029/2005JF000440)
Reichert BK, Bengtsson L and Åkesson O (1999) A statistical modeling approach for the simulation of local paleoclimatic proxy records using general circulation model output. J. Geophys. Res., 104(D16), 19 07119 083 (doi: 10.1029/1999JD900264)
Roe GH (2005) Orographic precipitation. Annu. Rev. Earth Planet. Sci., 33, 645671 (doi: 10.1146/annurev.earth.33.092203.122541)
Schneider C (2003) Regionales Klima und Gletschermassenbilanz am Gran Campo Nevado, Patagonien. (Habilitation dissertation, Albert-Ludwigs-Universität, Freiburg im Breisgau)
Schneider C, Glaser M, Kilian R, Santana A, Butorovic N and Casassa G (2003) Weather observations across the Southern Andes at 53° S. Phys. Geogr., 24(2), 97119 (doi: 10.2747/0272-3646.24.2.97)
Schneider C, Schnirch M, Acu͂na C, Casassa G and Kilian R (2007a) Glacier inventory of the Gran Campo Nevado Ice Cap in the Southern Andes and glacier changes observed during recent decades. Global Planet. Change, 59(1–4), 87100 (doi: 10.1016/j.gloplacha.2006.11.023)
Schneider C, Kilian R and Glaser M (2007b) Energy balance in the ablation zone during the summer season at the Gran Campo Nevado Ice Cap in the Southern Andes. Global Planet. Change, 59(1–4), 175188 (doi: 10.1016/j.gloplacha.2006.11.033)
Schuler TV and 6 others (2005) Distributed mass-balance and climate sensitivity modelling of Engabreen, Norway. Ann. Glaciol., 42, 395401 (doi: 10.3189/172756405781812998)
Schuler TV, Crochet P, Hock R, Jackson M, Barstad I and Johannesson T (2008) Distribution of snow accumulation on the Svartisen ice cap, Norway, assessed by a model of orographic precipitation. Hydrol. Process., 22(19), 39984008 (doi: 10.1002/hyp.7073)
Sinclair MR (1994) A diagnostic model for estimating orographic precipitation. J. Appl. Meteorol., 13(10), 11631175 (doi: 10.1175/1520-0450(1994)033<1163:ADMFEO>2.0.CO;2)
Smith RB (1979) The influence of mountains on the atmosphere. Adv. Geophys., 21, 87230
Smith RB (2003) A linear upslope-time-delay model for orographic precipitation. J. Hydrol., 282(1–4), 29 (doi: 10.1016/S0022-1694(03)00248-8)
Smith RB and Barstad I (2004) A linear theory of orographic precipitation. J. Atmos. Sci., 61(12), 13771391 (doi: 10.1175/1520-0469(2004)061<1377:ALTOOP>2.0.CO;2)
Smith RB and Evans JP (2007) Orographic precipitation and water vapor fractionation over the Southern Andes. J. Hydromet., 8(1), 319 (doi: 10.1175/JHM555.1)
Warren C and Aniya M (1999) The calving glaciers of southern South America. Global Planet. Change, 22(1–4), 5977
Widmann M, Bretherton CS and Salathé EP (2003) Statistical precipitation downscaling over the northwestern United States using numerically simulated precipitation as a predictor. J. Climate, 16(5), 799816 (doi: 10.1175/1520- 0442(2003)016<0799:SPDOTN>2.0.CO;2)
Wood AW, Leung LR, Sridhar V and Lettenmaier DP (2004) Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs. Climatic Change, 62(1–3), 189216 (doi: 10.1023/B:CLIM.0000013685.99609.9e)
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 1
Total number of PDF views: 20 *
Loading metrics...

Abstract views

Total abstract views: 31 *
Loading metrics...

* Views captured on Cambridge Core between 10th July 2017 - 17th January 2018. This data will be updated every 24 hours.