Skip to main content Accessibility help

Mapping the suitability for ice-core drilling of glaciers in the European Alps and the Asian High Mountains


Ice cores from mid-latitude mountain glaciers provide detailed information on past climate conditions and regional environmental changes, which is essential for placing current climate change into a longer term perspective. In this context, it is important to define guidelines and create dedicated maps to identify suitable areas for future ice-core drillings. In this study, the suitability for ice-core drilling (SICD) of a mountain glacier is defined as the possibility of extracting an ice core with preserved stratigraphy suitable for reconstructing past climate. Morphometric and climatic variables related to SICD are selected through literature review and characterization of previously drilled sites. A quantitative Weight of Evidence method is proposed to combine selected variables (i.e. slope, local relief, temperature and direct solar radiation) to map the potential drilling sites in mid-latitude mountain glaciers. The method was first developed in the European Alps and then applied to the Asian High Mountains. Model performances and limitations are discussed and first indications of new potential drilling sites in the Asian High Mountains are provided. Results presented here can facilitate the selection of future drilling sites especially on unexplored Asian mountain glaciers towards the understanding of climate and environmental changes.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Mapping the suitability for ice-core drilling of glaciers in the European Alps and the Asian High Mountains
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Mapping the suitability for ice-core drilling of glaciers in the European Alps and the Asian High Mountains
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Mapping the suitability for ice-core drilling of glaciers in the European Alps and the Asian High Mountains
      Available formats
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (, which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Corresponding author
Correspondence: Roberto Garzonio <>
Hide All
Agterberg, FP, Bonham-Carter, GF and Wright, DF (1990) Statistical pattern integration for mineral exploration, in Gàal, G., and Merriam, D. F., eds., Computer Applications in Resource Estimation. Pergamon, Oxford, p. 121
Aizen, VB and 5 others (2006) Climatic and atmospheric circulation pattern variability from ice-core isotope/geochemistry records (Altai, Tien Shan and Tibet). Ann. Glaciol., 43(1), 4960 (doi: 10.3189/172756406781812078)
Alley, RB (2000) Ice-core evidence of abrupt climate changes. Proc. Natl. Acad. Sci., 97(4), 13311334 (doi: 10.1073/pnas.97.4.1331)
An, W and 6 others (2016) Significant recent warming over the northern Tibetan Plateau from ice core δ 18 O records. Clim. Past, 12, 201211 (doi: 10.5194/cp-12-201-2016)
Andersen, KK and 48 others (2004) High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature, 431(7005), 147151 (doi: 10.1038/nature02805)
Beniston, M (2005) Mountain climates and climatic change: an overview of processes focusing on the European Alps. Pure Appl. Geophys., 162(8–9), 15871606 (doi: 10.1007/s00024-005-2684-9)
Benn, DI and Owen, LA (1998) The role of the Indian summer monsoon and the mid-latitude westerlies in Himalayan glaciation: review and speculative discussion. J. Geol. Soc. London., 155(2), 353363 (doi: 10.1144/gsjgs.155.2.0353)
Bhutiyani, MR, Kale, VS and Pawar, NJ (2007) Long-term trends in maximum, minimum and mean annual air temperatures across the Northwestern Himalaya during the twentieth century. Clim. Change, 85(1–2), 159177 (doi: 10.1007/s10584-006-9196-1)
Birnbaum, G and 16 others (2010) Strong-wind events and their influence on the formation of snow dunes: observations from Kohnen station, Dronning Maud land, Antarctica. J. Glaciol., 56(199), 891902 (doi: 10.3189/002214310794457272)
Bolch, T, Kamp, U and Olsenholler, J (2005) Using ASTER and SRTM DEMs for studying geomorphology and glaciation in high mountain areas. In Oluic (ed.), New Strateg. Eur. Remote Sens., Millpress, Rotterdam 119128 (doi: ISBN 90 5966 003 X)
Bolch, T and 11 others (2012) The state and fate of Himalayan glaciers. Science, 336(6079), 310314 (doi: 10.1126/science.1215828)
Bonham-Carter, GF, Agterberg, FP and Wright, DF (1989) Weights of evidence modelling: a new approach to mapping mineral potential. In Agterberg, FP and Bonham-Carter, GF, eds. Statistical applications in the earth sciences. Canadian Government Publishing Centre, Ottawa, 171183
Brönnimann, S, Xoplaki, E, Casty, C, Pauling, A and Luterbacher, J (2006) ENSO influence on Europe during the last centuries. Clim. Dyn., 28(2–3), 181197 (doi: 10.1007/s00382-006-0175-z)
Buffen, AM, Hastings, MG, Thompson, LG and Mosley-Thompson, E (2014) Investigating the preservation of nitrate isotopic composition in a tropical ice core from the Quelccaya Ice Cap, Peru. J. Geophys. Res. Atmos., 119(5), 26742697 (doi: 10.1002/2013JD020715)
Campbell, S and 7 others (2012) Melt regimes, stratigraphy, flow dynamics and glaciochemistry of three glaciers in the Alaska range. J. Glaciol., 58(207), 99109 (doi: 10.3189/2012JoG10J238)
Cannon, F and 6 others (2016) The influence of tropical forcing on extreme winter precipitation in the western Himalaya. Clim. Dyn., 48(3–4), 12131232 (doi: 10.1007/s00382-016-3137-0)
Copland, L and Sharp, M (2001) Mapping thermal and hydrological conditions beneath a polythermal glacier with radio-echo sounding. J. Glaciol., 47(157), 232242 (doi: 10.3189/172756501781832377)
Cuffey, K and Paterson, WSB (2010) The physics of glaciers, 3rd edn. Butterworth-Heinemann/Elsevier Academic Press
Davis, ME and Thompson, LG (2005) Forcing of the Asian monsoon on the Tibetan Plateau: evidence from high-resolution ice core and tropical coral records. J. Geophys. Res. D Atmos., 110(4), 113 (doi: 10.1029/2004JD004933)
Delmas, RJ (1992) Environmental information from ice cores. Rev. Geophys., 30(1), 121 (doi: 10.1029/91RG02725)
Di Mauro, B and 6 others (2015) Mineral dust impact on snow radiative properties in the European Alps combining ground, UAV, and satellite observations. J. Geophys. Res. Atmos., 120(12), 60806097 (doi: 10.1002/2015JD023287)
Dixit, Y and Tandon, SK (2016) Hydroclimatic variability on the Indian subcontinent in the past millennium: review and assessment. Earth-Sci. Rev., 161, 115 (doi: 10.1016/j.earscirev.2016.08.001)
Donat, MG and 26 others (2014) Changes in extreme temperature and precipitation in the Arab region: long-term trends and variability related to ENSO and NAO. Int. J. Climatol., 34(3), 581592 (doi: 10.1002/joc.3707)
Döscher, A, Göggeler, HW, Schotterer, U and Schwikowski, M (1995) A 130 years deposition record of sulfate, nitrate and chloride from a high-alpine glacier. Water, Air, Soil Pollut., 85(2), 603609 (doi: 10.1007/BF00476895)
Du, W, Kang, S, Qin, X, Cui, X and Sun, W (2016) Atmospheric insight to climatic signals of δ O in a Laohugou ice core in the northeastern Tibetan Plateau during 1960–2006. Sci. Cold Arid Reg., 8(5), 367377 (doi: 10.3724/SP.J.1226.2016.00367)
Duan, AM and Wu, GX (2005) Role of the Tibetan Plateau thermal forcing in the summer climate patterns over subtropical Asia. Clim. Dyn., 24(7–8), 793807 (doi: 10.1007/s00382-004-0488-8)
Duan, K, Thompson, LG, Yao, T, Davis, ME and Mosley-Thompson, E (2007) A 1000 year history of atmospheric sulfate concentrations in southern Asia as recorded by a Himalayan ice core. Geophys. Res. Lett., 34(1), L01810 (doi: 10.1029/2006GL027456)
Epica, CM (2004) Eight glacial cycles from an Antarctic ice core. Nature 429(6992), 623628 (doi: 10.1038/nature02599)
Epica, CM (2006) One-to-one coupling of glacial climate variability in Greenland and Antarctica. Nature, 444(7116), 195198 (doi: 10.1038/nature05301)
Faria, SH and 6 others (2009) Multiscale structures in the Antarctic ice sheet part I: inland ice. Takeo Hondoh Sapporo: Hokkaido University Press. (Low Temperature Science SI ed. Physics of ice core records II. (doi: 10013/epic.35759)
Faria, SH, Freitag, J and Kipfstuhl, S (2010) Polar ice structure and the integrity of ice-core paleoclimate records. Quat. Sci. Rev., 29(1), 338351 (doi: 10.1016/j.quascirev.2009.10.016)
Faria, SH, Weikusat, I and Azuma, N (2014) The microstructure of polar ice. Part I: highlights from ice core research. J. Struct. Geol., 61, 220 (doi: 10.1016/j.jsg.2013.09.010)
Filippi, L and 7 others (2014) Multidecadal variations in the relationship between the NAO and winter precipitation in the Hindu Kush–Karakoram. J. Clim., 27(20), 78907902 (doi: 10.1175/JCLI-D-14-00286.1)
Fowler, HJ, Archer, DR, Fowler, HJ and Archer, DR (2006) Conflicting signals of climatic change in the upper Indus basin. J. Clim., 19(17), 42764293 (doi: 10.1175/JCLI3860.1)
Gabrielli, P and 11 others (2010) Atmospheric warming threatens the untapped glacial archive of Ortles mountain, South Tyrol. J. Glaciol., 56(199), 843853 (doi: 10.3189/002214310794457263)
Gadgil, S (2003) The Indian monsoon and its variability. Annu. Rev. Earth Planet. Sci., 31(1), 429467 (doi: 10.1146/
Gardelle, J, Berthier, E and Arnaud, Y (2012) Slight mass gain of Karakoram glaciers in the early twenty-first century. Nat. Geosci., 5(5), 322325 (doi: 10.1038/ngeo1450)
Grigholm, B and 9 others (2016) Mid-twentieth century increases in anthropogenic Pb, Cd and Cu in Central Asia set in hemispheric perspective using Tien Shan ice core. Atmos. Environ., 131, 1728 (doi: 10.1016/j.atmosenv.2016.01.030)
Hayakawa, YS, Oguchi, T and Lin, Z (2008) Comparison of new and existing global digital elevation models: ASTER G-DEM and SRTM-3. Geophys. Res. Lett., 35(17), L17404 (doi: 10.1029/2008GL035036)
Hijmans, RJ, Cameron, SE, Parra, JL, Jones, PG and Jarvis, A (2005) Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol., 25(15), 19651978 (doi: 10.1002/joc.1276)
Hoelzle, M and 5 others (2007) The application of glacier inventory data for estimating past climate change effects on mountain glaciers: a comparison between the European Alps and the Southern Alps of New Zealand. Glob. Planet. Change, 56, 6982 (doi: 10.1016/j.gloplacha.2006.07.001)
Hofierka, J and Šúri, M (2002) The solar radiation model for open source GIS: implementation and applications. Open source GIS – GRASS users conference in Trento, Italy, September 2002
Hofierka, J, Mitášová, H and Neteler, M (2009) Chapter 17 geomorphometry in GRASS GIS. In Hengl, T and Reuter, HI, eds. Developments in soil science. Elsevier, Volume 33, 387410 (doi: 10.1016/S0166-2481(08)00017-2)
Hong, S and 8 others (2009) An 800-year record of atmospheric As, Mo, Sn, and Sb in Central Asia in high-altitude ice cores from Mt. Qomolangma (Everest), Himalayas. Environ. Sci. Technol., 43(21), 80608065 (doi: 10.1021/es901685u).
Jenk, TM and 7 others (2006) Radiocarbon analysis in an Alpine ice core: record of anthropogenic and biogenic contributions to carbonaceous aerosols in the past (1650–1940). Atmos. Chem. Phys. Discuss., 6(4), 59055931 (doi: 10.5194/acpd-6-5905-2006).
Joswiak, DR, Yao, T, Wu, G, Tian, L and Xu, B (2013) Ice-core evidence of westerly and monsoon moisture contributions in the central Tibetan Plateau. J. Glaciol., 59(213), 5666 (doi: 10.3189/2013JoG12J035)
Jouzel, J and Masson-Delmotte, V (2010) Paleoclimates: what do we learn from deep ice cores? Wiley Interdiscip. Rev. Clim. Chang., 1(5), 654669 (doi: 10.1002/wcc.72)
Kääb, A, Berthier, E, Nuth, C, Gardelle, J and Arnaud, Y (2012) Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature, 488(7412), 495498 (doi: 10.1038/nature11324)
Kang, S and 5 others (2003) Dust records from three ice cores: relationships to spring atmospheric circulation over the Northern Hemisphere. Atmos. Environ., 37(34), 48234835 (doi: 10.1016/j.atmosenv.2003.08.010)
Kang, S and 5 others (2010) Review of climate and cryospheric change in the Tibetan Plateau. Environ. Res. Lett., 5(1), 15101 (doi: 10.1088/1748-9326/5/1/015101)
Kang, S and 10 others (2015) Dramatic loss of glacier accumulation area on the Tibetan Plateau revealed by ice core tritium and mercury records. Cryosphere, 9(3), 12131222 (doi: 10.5194/tc-9-1213-2015)
Kargel, JS, Leonard, GJ, Bishop, MP, Kääb, A and Raup, BH (2014) Global land ice measurements from space. Springer Berlin Heidelberg, Berlin, Heidelberg (doi: 10.1007/978-3-540-79818-7)
Karnatak, HC, Saran, S, Bhatia, K and Roy, PS (2007) Multicriteria spatial decision analysis in web GIS environment. GeoInformatica, 11(4), 407429 (doi: 10.1007/s10707-006-0014-8)
Kaspari, S and 11 others (2007) Reduction in northward incursions of the South Asian monsoon since ~1400 AD inferred from a Mt. Everest ice core. Geophys. Res. Lett., 34(16), L16701 (doi: 10.1029/2007GL030440)
Kaspari, S and 7 others (2009a) A high-resolution record of atmospheric dust composition and variability since A.D. 1650 from a Mount Everest ice core. J. Clim., 22(14), 39103925 (doi: 10.1175/2009JCLI251.8.1)
Kaspari, S and 7 others (2009b) Recent increases in atmospheric concentrations of Bi, U, Cs, S and Ca from a 350-year Mount Everest ice core record. J. Geophys. Res., 114(D4), D04302 (doi: 10.1029/2008JD011088)
Kawamura, K and 17 others (2007) Northern Hemisphere forcing of climatic cycles in Antarctica over the past 360,000 years. Nature, 448(7156), 912916 (doi: 10.1038/nature06015)
Kreutz, KJ, Aizen, VB, Cecil, LD and Wake, CP (2001) Oxygen isotopic and soluble ionic composition of a shallow firn core, Inilchek glacier, central Tien Shan. J. Glaciol., 47(159), 548554 (doi: 10.3189/172756501781831819)
Kumar, P and 6 others (2015) Response of Karakoram-Himalayan glaciers to climate variability and climatic change: a regional climate model assessment. Geophys. Res. Lett., 42(6), 18181825 (doi: 10.1002/2015GL063392)
Lee, X, Qin, D, Jiang, G, Duan, K and Zhou, H (2003) Atmospheric pollution of a remote area of Tianshan Mountain: ice core record. J. Geophys. Res., 108(D14), 4406 (doi: 10.1029/2002JD002181)
Lowell, TV (2000) As climate changes, so do glaciers. Proc. Natl. Acad. Sci. USA, 97(4), 13511354 (doi: 10.1073/pnas.97.4.1351)
Mariani, I and 6 others (2014) Temperature and precipitation signal in two Alpine ice cores over the period 1961–2001. Clim. Past, 10(3), 10931108 (doi: 10.5194/cp-10-1093-2014)
Mattavelli, M and 6 others (2016) The IDB: an ice core geodatabase for paleoclimatic and glaciological analyses. Geogr. Fis. Dinam. Quat., 39(39), 5970 (doi: 10.4461/GFDQ.2016.39.6)
Mayer, C and 6 others (2014) Accumulation studies at a high elevation glacier site in central Karakoram. Adv. Meteorol., 2014, 112 (doi: 10.1155/2014/215162)
Mölg, T, Maussion, F and Scherer, D (2013) Mid-latitude westerlies as a driver of glacier variability in monsoonal high Asia. Nat. Clim. Change, 4(1), 6873 (doi: 10.1038/nclimate2055)
Müller, WA and Roeckner, E (2006) ENSO impact on midlatitude circulation patterns in future climate change projections. Geophys. Res. Lett., 33(5), L05711 (doi: 10.1029/2005GL025032)
Neff, PD and 5 others (2012) Ice-core net snow accumulation and seasonal snow chemistry at a temperate-glacier site: Mount Waddington, southwest British Columbia, Canada. J. Glaciol., 58(212), 11651175 (doi: 10.3189/2012JoG12J078)
Orombelli, G, Maggi, V and Delmonte, B (2010) Quaternary stratigraphy and ice cores. Quat. Int., 219(1), 5565 (doi: 10.1016/j.quaint.2009.09.029)
Papina, T and 5 others (2013) Biological proxies recorded in a Belukha ice core, Russian Altai. Clim. Past, 9(5), 23992411 (doi: 10.5194/cp-9-2399-2013)
Petit, JR and 18 others (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature, 399(6735), 429436 (doi: 10.1038/20859)
Pfeffer, WT and 18 others (2014) The Randolph Glacier Inventory: a globally complete inventory of glaciers. J. Glaciol., 60(221), 537552 (doi: 10.3189/2014JoG13J176)
Pradhan, B, Oh, H-J and Buchroithner, M (2010) Weights-of-evidence model applied to landslide susceptibility mapping in a tropical hilly area. Geomatics, Nat. Hazards Risk, 1(3), 199223 (doi: 10.1080/19475705.2010.498151).
Preunkert, S, Wagenbach, D, Legrand, M and Vincent, C (2000) Col du Dome (Mt Blanc Massif, French Alps) suitability for ice-core studies in relation with past atmospheric chemistry over Europe. Tellus, Ser. B Chem. Phys. Meteorol., 52, 9931012 (doi: 10.1034/j.1600-0889.2000.d01-8.x).
Qu, B and 8 others (2014) The decreasing albedo of the Zhadang glacier on western Nyainqentanglha and the role of light-absorbing impurities. Atmos. Chem. Phys., 14(20), 1111711128 (doi: 10.5194/acp-14-11117-2014)
Regmi, NR, Giardino, JR and Vitek, JD (2010) Modeling susceptibility to landslides using the weight of evidence approach: western Colorado, USA. Geomorphology, 115(1–2), 172187 (doi: 10.1016/j.geomorph.2009.10.002).
Schotterer, U, Fröhlich, K, Gäggeler, HW, Sandjordj, S and Stichler, W (1997) Isotope records from Mongolian and alpine ice cores as climate indicators. Clim. Change, 36(3/4), 519530 (doi: 10.1023/A:1005338427567)
Schotterer, U, Stichler, W and Ginot, P (2004) The influence of post-depositional effects on ice core studies: examples from the Alps, Andes, and Altai. In Dewayne Cecil, L, Green, JR and Thompson, LG, eds. Earth paleoenvironments: records preserved in mid- and low-latitude glaciers. Kluwer Academic Publishers, Dordrecht, 3959 (doi: 10.1007/1-4020-2146-1_3)
Schuster, PF and 8 others (2002) Atmospheric mercury deposition during the last 270 years: a glacial ice core record of natural and anthropogenic sources. Environ. Sci. Technol., 36(11), 23032310 (doi: 10.1021/es0157503)
Schwikowski, M, Döscher, A, Gäggeler, HW and Schotterer, U (1999) Anthropogenic versus natural sources of atmospheric sulphate from an Alpine ice core. Tellus, Ser. B Chem. Phys. Meteorol. 51, 938951 (doi: 10.1034/j.1600-0889.1999.t01-4-00006.x).
Schwikowski, M and 11 others (2004) Post-17th-century changes of European lead emissions recorded in high-altitude alpine snow and ice. Environ. Sci. Technol., 38, 957964 (doi: 10.1021/es034715o).
Schwikowski, M, Brütsch, S, Casassa, G and Rivera, A (2006) A potential high-elevation ice-core site at Hielo Patagónico Sur. Ann. Glaciol., 43(1995), 813 (doi: 10.3189/172756406781812014)
Shekhar, MS, Chand, H, Kumar, S, Srinivasan, K and Ganju, A (2010) Climate-change studies in the western Himalaya. Ann. Glaciol., 51(54), 105112 (doi: 10.3189/172756410791386508)
Singh, RB and Mal, S (2014) Trends and variability of monsoon and other rainfall seasons in Western Himalaya, India. Atmos. Sci. Lett., 15(3), 218226 (doi: 10.1002/asl2.494)
Sinha, A and 7 others (2015) Trends and oscillations in the Indian summer monsoon rainfall over the last two millennia. Nat. Commun., 6, 6309 (doi: 10.1038/ncomms7309).
Sterlacchini, S, Ballabio, C, Blahut, J, Masetti, M and Sorichetta, A (2011) Spatial agreement of predicted patterns in landslide susceptibility maps. Geomorphology, 125(1), 5161 (doi: 10.1016/j.geomorph.2010.09.004)
Svensson, A and 13 others (2008) A 60 000 year Greenland stratigraphic ice core chronology. Clim. Past, 4(1), 4757 (doi: 10.5194/cp-4-47-2008)
Tachikawa, T and 11 others (2011) ASTER Global Digital Elevation Model Version 2 – summary of validation results.
Thevenon, F, Anselmetti, FS, Bernasconi, SM and Schwikowski, M (2009) Mineral dust and elemental black carbon records from an Alpine ice core (Colle Gnifetti glacier) over the last millennium. J. Geophys. Res., 114(D17), D17102 (doi: 10.1029/2008JD011490)
Thiery, Y, Malet, JP, Sterlacchini, S, Puissant, A and Maquaire, O (2007) Landslide susceptibility assessment by bivariate methods at large scales: application to a complex mountainous environment. Geomorphology, 92(1–2), 3859 (doi: 10.1016/j.geomorph.2007.02.020)
Thompson, LG (1996) Climatic changes for the 2000 years inferred from ice-core evidence in tropical ice cores. Jones, PD, Bradley, RS and Jouzel, J eds. Climatic variations and forcing mechanisms of the last 2000 years. NATO ASI Series (Series I: Global Environmental Change). Springer, Berlin, Heidelberg, 281295 (doi: 10.1007/978-3-642-61113-1_14)
Thompson, LG (2000) Ice core evidence for climate change in the Tropics: implications for our future. Quat. Sci. Rev., 19(1–5), 1935 (doi: 10.1016/S0277-3791(99)00052-9)
Thompson, LG (2010) Understanding global climate change: paleoclimate perspective from the world's highest mountains. Proc. Am. Philos. Soc., 154(2), 133157
Thompson, LG and 5 others (2000) A high-resolution millennial record of the South Asian Monsoon from Himalayan ice cores. Science, 289(5486), 19161919 (doi: 10.1126/science.289.5486.1916)
Thompson, LG and 5 others (2003) Tropical glacier and ice core evidence of climate change on annual to millennial time scales. Clim. Change, 59, 137155 (doi: 10.1023/A:1024472313775)
Thompson, LG and 5 others (2005) Tropical ice core records: evidence for asynchronous glaciation on Milankovitch timescales. J. Quat. Sci., 20, 723733 (doi: 10.1002/jqs.972)
Thompson, LG, Mosley-Thompson, E, Davis, ME and Brecher, HH (2011) Tropical glaciers, recorders and indicators of climate change, are disappearing globally. Ann. Glaciol., 52(59), 2334 (doi: 10.3189/172756411799096231)
Thompson, LG and 6 others (2013) Annually resolved ice core records of tropical climate variability over the past 1800 years. Science, 340(6135), 945950 (doi: 10.1126/science.1234210)
Tian, L and 7 others (2003) Oxygen-18 concentrations in recent precipitation and ice cores on the Tibetan Plateau. J. Geophys. Res., 108(D9), 110 (doi: 10.1029/2002JD002173)
Vimeux, F and 6 others (2009) Climate variability during the last 1000 years inferred from Andean ice cores: a review of methodology and recent results. Palaeogeogr. Palaeoclimatol. Palaeoecol., 281(3–4), 229241 (doi: 10.1016/j.palaeo.2008.03.054)
Vincent, C and 6 others (2005) Glacier fluctuations in the Alps and in the tropical Andes. C. R. Geosci., 337(1–2), 97106 (doi: 10.1016/j.crte.2004.08.010).
Wagenbach, D and Geis, K (1989) The mineral dust record in a high altitude alpine glacier (Colle Gnifetti, Swiss Alps). In Leinen, M and Sarnthein, M, eds. Paleoclimatology and paleometeorology: modern and past patterns of global atmospheric transport. Kluwer Academic Publishers, London, 543564 (doi: 10.1017/CBO9781107415324.004)
Wagenbach, D, Bohleber, P and Preunkert, S (2012) Cold, alpine ice bodies revisited: what may we learn from their impurity and isotope content? Geogr. Ann. Ser. A Phys. Geogr., 94(2), 245263 (doi: 10.1111/j.1468-0459.2012.00461.x)
Wake, CP (1989) Glaciochemical investigations as a tool for determining the spatial and seasonal variation of snow accumulation in the central Karakoram, northern Pakistan. Ann. Glaciol., 13, 279284
Welch, BC, Pfeffer, WT, Harper, JT and Humphrey, NF (1998) Mapping subglacial surfaces of temperate valley glaciers by two-pass migration of a radio-echo sounding survey. J. Glaciol., 44(146), 164170
Whan, K and Zwiers, F (2017) The impact of ENSO and the NAO on extreme winter precipitation in North America in observations and regional climate models. Clim. Dyn., 48(5), 14011411 (doi: 10.1007/s00382-016-3148-x)
Wilson, JP and Gallant, JC (2000) Terrain analysis: principles and applications. John Wiley & Sons Inc. (doi: 0471321885)
Xu, B and 11 others (2009) Black soot and the survival of Tibetan glaciers. Proc. Natl. Acad. Sci., 106(52), 2211422118 (doi: 10.1073/pnas.0910444106)
Yang, X, Joswiak, D and Yao, P (2014) Integration of Tibetan Plateau ice-core temperature records and the influence of atmospheric circulation on isotopic signals in the past century. Quat. Res., 81(3), 520530 (doi: 10.1016/j.yqres.2014.01.006)
Yao, T and 14 others (2012) Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Clim. Change, 2(9), 663667 (doi: 10.1038/nclimate1580)
Ye, D-Z and Wu, G-X (1998) The role of the heat source of the Tibetan Plateau in the general circulation. Meteorol. Atmos. Phys., 67(1–4), 181198 (doi: 10.1007/BF01277509)
Yu, W and 10 others (2016) Δ18o records in water vapor and an ice core from the eastern Pamir Plateau: implications for paleoclimate reconstructions. Earth Planet. Sci. Lett., 456, 146156 (doi: 10.1016/j.epsl.2016.10.001)
Zhang, Q, Kang, S, Gabrielli, P, Loewen, M and Schwikowski, M (2015) Vanishing high mountain glacial archives: challenges and perspectives. Environ. Sci. Technol., 49(16), 94999500 (doi: 10.1021/acs.est.5b03066)
Zhao, H, Xu, B, Yao, T, Tian, L and Li, Z (2011) Records of sulfate and nitrate in an ice core from Mount Muztagata, Central Asia. J. Geophys. Res., 116(D13), D13304 (doi: 10.1029/2011JD015735)
Zhisheng, A, Kutzbach, JE, Prell, WL and Porter, SC (2001) Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since late Miocene times. Nature, 411(6833), 6266 (doi: 10.1038/35075035)
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed