Skip to main content
×
×
Home

Non-linear glacier response to calving events, Jakobshavn Isbræ, Greenland

  • RYAN CASSOTTO (a1), MARK FAHNESTOCK (a2), JASON M. AMUNDSON (a3), MARTIN TRUFFER (a2), MARGARET S. BOETTCHER (a1), SANTIAGO DE LA PEÑA (a4) and IAN HOWAT (a4)...
Abstract

Jakobshavn Isbræ, a tidewater glacier that produces some of Greenland's largest icebergs and highest speeds, reached record-high flow rates in 2012 (Joughin and others, 2014). We use terrestrial radar interferometric observations from August 2012 to characterize the events that led to record-high flow. We find that the highest speeds occurred in response to a small calving retreat, while several larger calving events produced negligible changes in glacier speed. This non-linear response to calving events suggests the terminus was close to flotation and therefore highly sensitive to terminus position. Our observations indicate that a glacier's response to calving is a consequence of two competing feedbacks: (1) an increase in strain rates that leads to dynamic thinning and faster flow, thereby promoting destabilization, and (2) an increase in flow rates that advects thick ice toward the terminus and promotes restabilization. The competition between these feedbacks depends on temporal and spatial variations in the glacier's proximity to flotation. This study highlights the importance of dynamic thinning and advective processes on tidewater glacier stability, and further suggests the latter may be limiting the current retreat due to the thick ice that occupies Jakobshavn Isbræ’s retrograde bed.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Non-linear glacier response to calving events, Jakobshavn Isbræ, Greenland
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Non-linear glacier response to calving events, Jakobshavn Isbræ, Greenland
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Non-linear glacier response to calving events, Jakobshavn Isbræ, Greenland
      Available formats
      ×
Copyright
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Corresponding author
Correspondence: Ryan Cassotto <Ryan.Cassotto@Colorado.edu>
Footnotes
Hide All
*

Present address: Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO.

Footnotes
References
Hide All
Amundson, JM and 5 others (2008) Glacier, fjord, and seismic response to recent large calving events, Jakobshavn Isbræ, Greenland. Geophys. Res. Lett., 35(22), L22501 (doi: 10.1029/2008GL035281)
Amundson, JM and 5 others (2010) Ice m'elange dynamics and implications for terminus stability, Jakobshavn Isbræ, Greenland. J. Geophys. Res. Earth Surf., 115, F01005
Bamber, JL and 10 others (2013) A new bed elevation dataset for Greenland. The Cryosphere, 7(2), 499510 (doi: 10.5194/tc-7-499-2013)
Briner, JP, Stewart, HAM, Young, NE, Philipps, W and Losee, S (2010) Quaternary science reviews. Quat. Sci. Rev., 29(27–28), 38613874 (doi: 10.1016/j.quascirev.2010.09.005)
Briner, JP and 5 others (2011) Varve and radiocarbon dating support the rapid advance of Jakobshavn Isbrae during the little ice age. Quat. Sci. Rev., 30(19–20), 24762486 (doi: 10.1016/j.quascirev.2011.05.017)
Caduff, R, Schlunegger, F, Kos, A and Wiesmann, A (2014) A review of terrestrial radar interferometry for measuring surface change in the geosciences. Earth Surf. Process. Landforms, 40(2), 208228 (doi: 10.1002/esp.3656)
Cassotto, R, Fahnestock, M, Amundson, JM, Truffer, M and Joughin, I (2015) Seasonal and interannual variations in ice melange and its impact on terminus stability, Jakobshavn Isbræ, Greenland. J. Glaciol., 61(225), 7688 (doi: 10.3189/2015JoG13J235)
Clarke, TS and Echelmeyer, K (1996) Seismic-reflection evidence for a deep subglacial trough beneath Jakobshavns Isrbrae, West Greenland. J. Glaciol., 43(141), 219232
de Juan, J and 12 others (2010) Sudden increase in tidal response linked to calving and acceleration at a large Greenland outlet glacier. Geophys. Res. Lett., 37(12), L12501 (doi: 10.1029/2010GL043289)
Dixon, TH and 7 others (2012) Emerging technology monitors ice-sea interface at outlet glaciers. EOS (Washington, DC), 93(48), 497498 (doi: 10.1029/2012EO480001)
Enderlin, EM, Howat, IM and Vieli, A (2013) High sensitivity of tidewater outlet glacier dynamics to shape. Cryosphere, 7(3), 10071015 (doi: 10.5194/tc-7-1007-2013)
Enderlin, EM and 5 others (2014) An improved mass budget for the Greenland ice sheet. Geophys. Res. Lett., 41, 866872
Enderlin, EM, O'Neel, S, Bartholomaus, TC and Joughin, I (2018) Evolving environmental and geometric controls on Columbia glacier's continued retreat. J. Geophys. Res. Earth Surf., 123(7), 15281545 (doi: 10.1029/2017JF004541)
Fahnestock, M and 5 others (2015) Rapid large-area mapping of ice flow using Landsat 8. Remote Sens. Environ., 185, 111 (doi: 10.1016/j.rse.2015.11.023)
Goldstein, RM and Werner, CL (1998) Radar interferogram filtering for geophysical applications. Geophys. Res. Lett., 25(21), 40354038 (doi: 10.1029/1998GL900033)
Goldstein, RM, Zebker, HA and Werner, CL (1988) Satellite radar interferometry: two-dimensional phase unwrapping. Radio. Sci., 23(4), 713720 (doi: 10.1029/RS023i004p00713)
Hanssen, RF (2001) Radar interferometry. Data interpretation and error analysis. Kluwer Academic Publishers, Hingham, US.
Holland, D, Thomas, R, Young, BD, Ribergaard, MH and Lyberth, B (2008) Acceleration of Jakoshavn Isbrae triggered by warm subsurface ocean waters. Nat. Geosci., 1, 659664
Hughes, T (1989) Calving ice walls. Ann. Glaciol., 12, 7480
James, TD, Murray, T, Selmes, N, Scharrer, K and O'Leary, M (2014) Buoyant flexure and basal crevassing in dynamic mass loss at Helheim Glacier. Nat. Geosci., 7(8), 593596 (doi: 10.1038/ngeo2204)
Joughin, I, Abdalati, W and Fahnestock, M (2004) Large fluctuations in speed on Greenland's Jakobshavn Isbræ glacier. Nature 2014 514:7520 432(7017), 608610 (doi: 10.1038/nature03130)
Joughin, I and 6 others (2012) Seasonal to decadal scale variations in the surface velocity of Jakobshavn Isbrae, Greenland: observation and model-based analysis. J. Geophys. Res., 117(F2) (doi: 10.1029/2011JF002110)
Joughin, I, Smith, BE, Shean, DE and Floricioiu, D (2014) Brief communication: further summer speedup of Jakobshavn Isbræ. Cryosphere, 8(1), 209214 (doi: 10.5194/tc-8-209-2014)
Joughin, I, Smith, BE and Howat, I (2018) Greenland ice mapping project: ice flow velocity variation at sub-monthly to decadal timescales. The Cryosphere, 12, 22112227, (doi.org/10.5194/tc-12-2211-2018)
Krabill, W and 12 others (2004) Greenland ice sheet: increased coastal thinning. Geophys. Res. Lett., 31(24), L24402 (doi: 10.1029/2004GL021533)
Luckman, A and Murray, T (2005) Seasonal variation in velocity before retreat of Jakobshavn Isbræ, Greenland. Geophys. Res. Lett., 32(8) (doi: 10.1029/2005GL022519)
Meier, MF, Post, A, Rasmussen, LA, Sikonia, WG and Mayo, LR (1979) Retreat of Columbia glacier, Alaska. Tacoma, Washington: United States Geological Survey.
Moon, T and Joughin, I (2008) Changes in ice front position on Greenland's outlet glaciers from 1992 to 2007. J. Geophys. Res., 113, F02022 (doi: 10.1029/2007JF000927)
Morlighem, M and 31 others (2017) Bedmachine v3: complete bed topography and ocean bathymetry mapping of Greenland from multibeam echo sounding combined with mass conservation. Geophys. Res. Lett., 44(21), 11,05111,061 (doi: 10.1002/2017GL074954)
Motyka, R, Fahnestock, M and Truffer, M (2010) Volume change of Jakobshavn Isbrae, West Greenland: 1985–1997–2007. J. Glaciol., 56(198), 635646
Motyka, RJ and 5 others (2011) Submarine melting of the 1985 Jakobshavn Isbræ floating tongue and the triggering of the current retreat. J. Geophys. Res. Earth Surf., 116(F), F01007 (doi: 10.1029/2009JF001632)
Motyka, RJ and 10 others (2017) Asynchronous behavior of outlet glaciers feeding Godthåbsfjord (Nuup Kangerlua) and the triggering of Narsap Sermia. J. Glaciol., 63(238), 288308 (doi: 10.1017/jog.2016.138)
Nettles, M and 12 others (2008) Step-wise changes in glacier flow speed coincide with calving and glacial earthquakes at Helheim Glacier, Greenland. Geophys. Res. Lett., 35(24), L24503 (doi: 10.1029/2008GL036127)
Nick, FM, van der Veen, CJ and Oerlemans, J (2007) Controls on advance of tidewater glaciers: results from numerical modeling applied to Columbia Glacier. J. Geophys. Res., 112, F03S24 (doi: 10.1029/2006JF000551)
O'Neel, S, Echelmeyer, KA and Motyka, RJ (2001) Short-term flow dynamics of a retreating tidewater glacier: LeConte Glacier, Alaska, U.S.A. J. Glaciol., 47(159), 567578 (doi: 10.3189/172756501781831855)
Pawlowicz, R, Beardsley, B and Lentz, S (2002) Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Comput. Geosci., 28(8), 929937 (doi: 10.1016/S0098-3004(02)00013-4)
Peters, IR and 6 others (2015) Dynamic jamming of iceberg-choked fjords. Geophys. Res. Lett., 42, 11221129 (doi: 10.1002/(ISSN)1944-8007)
Pfeffer, WT (2007) A simple mechanism for irreversible tidewater glacier retreat. J. Geophys. Res., 112(F03S25), 112 (doi: 10.1029/2006JF000590)
Podlech, S and Weidick, A (2004) A catastrophic break-up of the front of Jakobshavn Isbrae, West Greenland, 2002/03. J. Glaciol., 50(168), 153154
Podrasky, D and 5 others (2012) Outlet glacier response to forcing over hourly to interannual timescales, Jakobshavn Isbræ, Greenland. J. Glaciol., 58(212), 12121226 (doi: 10.3189/2012JoG12J065)
Podrasky, D, Truffer, M, Luthi, M and Fahnestock, M (2014) Quantifying velocity response to ocean tides and calving near the terminus of Jakobshavn Isbræ, Greenland. J. Glaciol., 60(222), 609621 (doi: 10.3189/2014JoG13J130)
Pritchard, HD, Arthern, RJ, Vaughan, DG and Edwards, LA (2009) Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets. Lett. Nat., 461(7266), 971975 (doi: 10.1038/nature08471)
Rosenau, R, Schwalbe, E, Maas, HG, Baessler, M and Dietrich, R (2013) Grounding line migration and high-resolution calving dynamics of Jakobshavn Isbræ, West Greenland. J. Geophys. Res. Earth Surf., 118(2), 382395 (doi: 10.1029/2012JF002515)
Scambos, TA, Bohlander, JA, Shuman, CA and Skvarca, P (2004) Glacier acceleration and thinning after ice shelf collapse in the Larsen B embayment, Antarctica. Geophys. Res. Lett., 31(18), L18402 (doi: 10.1029/2004GL020670)
Schoof, C (2007) Ice sheet grounding line dynamics: steady states, stability, and hysteresis. J. Geophys. Res. Solid Earth (1978–2012), 112(F3), 119 (doi: 10.1029/2006JF000664)
Sohn, H-G, Jezek, KC and van der Veen, CJ (1998) Jakobshavn glacier, West Greenland: 30 years of spaceborne observations. Geophys. Res. Lett., 25, 26992702
Strozzi, T, Werner, C, Wiesmann, A and Wegmuller, U (2012) Topography mapping with a portable real-aperture radar interferometer. Geosci. Remote Sens. Lett. IEEE, 9(2), 277281 (doi: 10.1109/LGRS.2011.2166751)
Thomas, R (2004) Force-pertubation analysis of recent thinning and acceleration of Jakobshavn Isbrae, Greenland. J. Glaciol., 50(168), 5766
Van den Broeke, M and 8 others (2009) Partitioning recent Greenland mass loss. Science, 326(5955), 984986 (doi: 10.1126/science.1178176)
van der Veen, CJ (1996) Tidewater calving. J. Glaciol., 42(141), 375385
Vieli, A and Nick, FM (2011) Understanding and modelling rapid dynamic changes of tidewater outlet glaciers: issues and implications. Surv. Geophys., 32(4–5), 437458 (doi: 10.1007/s10712-011-9132-4)
Vieli, A, Jania, J and Kolondra, L (2002) The retreat of a tidewater glacier: observations and model calculations on Hansbreen, Spitsbergen. J. Glaciol., 48(163), 592600
Voytenko, D and 7 others (2015a) Multi-year observations of Breiðamerkurjökull, a marine-terminating glacier in southeastern Iceland, using terrestrial radar interferometry. J. Glaciol., 61(225), 4254 (doi: 10.3189/2015JoG14J099)
Voytenko, D and 5 others (2015b) Tidally driven ice speed variation at Helheim Glacier, Greenland, observed with terrestrial radar interferometry. J. Glaciol., 61(226), 301308 (doi: 10.3189/2015JoG14J173)
Voytenko, D and 7 others (2017) Acquisition of a 3 min, two-dimensional glacier velocity field with terrestrial radar interferometry. J. Glaciol., 63(240), 629636 (doi: 10.1017/jog.2017.28)
Walters, RA and Dunlap, WW (1987) Analysis of time series of glacier speed: Columbia Glacier, Alaska. J. Geophys. Res., 92(B9), 89698975
Weidick, A and Bennike, O (2007) Quaternary glaciation history and glaciology of Jakobshavn Isbræ and the Disko Bugt region, West Greenland: a review. Geol. Surv. Den. Greenl. Bull., 14, 78 pp
Weidick, A, Mikkelsen, N, Mayer, C and Podlech, S (2004) Jakobshavn Isbræ, West Greenland: the 2002–2003 collapse and nomination for the UNESCO World Heritage List. Geol. Surv. Den. Greenl. Bull., 4. See also: https://eng.geus.dk/products-services-facilities/publications/geus-bulletin/bulletin-4/
Werner, C, Strozzi, T, Wiesmann, A and Wegmuller, U (2008) A real-aperture radar for ground-based differential interferometry. IEEE, 3, III – 210III – 213 (doi: 10.1109/IGARSS.2008.4779320)
Xie, S and 5 others (2016) Precursor motion to iceberg calving at Jakobshavn Isbræ, Greenland, observed with terrestrial radar interferometry. J. Glaciol., 62(236), 11341142 (doi: 10.1017/jog.2016.104)
Young, NE and 6 others (2011) Response of Jakobshavn Isbrae, Greenland, to Holocene climate change. Geology, 39(2), 131134 (doi: 10.1130/G31399.1)
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Type Description Title
UNKNOWN
Cassotto et al. supplementary material 1

Cassotto et al. supplementary material
Cassotto et al. supplementary material 1

 Unknown (184.1 MB)
184.1 MB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed