Skip to main content Accessibility help
×
×
Home

Summer surface melt thins Petermann Gletscher Ice Shelf by enhancing channelized basal melt

  • PETER WASHAM (a1), KEITH W. NICHOLLS (a2), ANDREAS MÜNCHOW (a1) and LAURIE PADMAN (a3)

Abstract

Increasing ocean and air temperatures have contributed to the removal of floating ice shelves from several Greenland outlet glaciers; however, the specific contribution of these external forcings remains poorly understood. Here we use atmospheric, oceanographic and glaciological time series data from the ice shelf of Petermann Gletscher, NW Greenland to quantify the forcing of the ocean and atmosphere on the ice shelf at a site ~16 km from the grounding line within a large sub-ice-shelf channel. Basal melt rates here indicate a strong seasonality, rising from a winter mean of 2 m a−1 to a maximum of 80 m a−1 during the summer melt season. This increase in basal melt rates confirms the direct link between summer atmospheric warming around Greenland and enhanced ocean-forced melting of its remaining ice shelves. We attribute this enhanced melting to increased discharge of subglacial runoff into the ocean at the grounding line, which strengthens under-ice currents and drives a greater ocean heat flux toward the ice base.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Summer surface melt thins Petermann Gletscher Ice Shelf by enhancing channelized basal melt
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Summer surface melt thins Petermann Gletscher Ice Shelf by enhancing channelized basal melt
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Summer surface melt thins Petermann Gletscher Ice Shelf by enhancing channelized basal melt
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Correspondence: Peter Washam <pwasham@udel.edu>

Footnotes

Hide All

Present address: College of Earth Ocean and Environment University of Delaware Newark DE USA.

Footnotes

References

Hide All
Alley, KE, Scambos, TA, Siegfried, MR and Fricker, HA (2016) Impacts of warm water on Antarctic ice shelf stability through basal channel formation. Nat. Geosci., 9(4), 290293 (doi: 10.1038/ngeo2675)
Bartholomaus, TC and 10 others (2016) Contrasts in the response of adjacent fjords and glaciers to ice-sheet surface melt in West Greenland. Ann. Glaciol., 57(73), 2538 (doi: 10.1017/aog.2016.19)
Beaird, N, Straneo, F and Jenkins, W (2015) Spreading of Greenland meltwaters in the ocean revealed by noble gases. Geophys. Res. Lett., 42(18), 77057713 (doi: 10.1002/2015GL065003)
Brennan, PV, Lok, LB, Nicholls, K and Corr, H (2014) Phase-sensitive FMCW radar system for high-precision Antarctic ice shelf profile monitoring. IET Radar Sonar Navigation, 8(7), 776786 (doi: 10.1049/iet-rsn.2013.0053)
Cai, C, Rignot, E, Menemenlis, D and Nakayama, Y (2017) Observations and modeling of ocean-induced melt beneath Petermann Glacier Ice Shelf in northwestern Greenland. Geophys. Res. Lett., 44(16), 83968403 (doi: 10.1002/2017GL073711)
Chu, VW (2014) Greenland ice sheet hydrology: a review. Prog. Phys. Geogr., 38(1), 1954 (doi: 10.1177/0309133313507075)
Dow, CF and 8 others (2018) Basal channels drive active surface hydrology and transverse ice shelf fracture. Sci. Adv., 4(6), eaao7212 (doi: 10.1126/sciadv.aao7212)
Fofonoff and Bryden, (1975) Specific gravity and density of seawater at atmospheric pressure. J. Mar. Res., 33, 6982.
Fried, MJ and 8 others (2015) Distributed subglacial discharge drives significant submarine melt at a Greenland tidewater glacier. Geophys. Res. Lett., 42(21), 93289336 (doi: 10.1002/2015GL065806)
Gade, HG (1979) Melting of ice in sea water: a primitive model with application to the Antarctic ice shelf and icebergs. J. Phys. Oceanogr., 9(1), 189198 (doi: 10.1175/1520-0485(1979)0090189:MOIISW2.0.CO;2)
Gladish, CV, Holland, DM, Holland, PR and Price, SF (2012) Ice-shelf basal channels in a coupled ice/ocean model. J. Glaciol., 58(212), 12271244 (doi: 10.3189/2012JoG12J003)
Gourmelen, N and 7 others (2017) Channelized melting drives thinning under a rapidly melting Antarctic ice shelf. Geophys. Res. Lett., 44(19), 97969804 (doi: 10.1002/2017GL074929)
Heuzé, C, Wåhlin, A, Johnson, HL and Münchow, A (2017) Pathways of meltwater export from Petermann Glacier, Greenland. J. Phys. Oceanogr., 47(2), 405418 (doi: 10.1175/JPO-D-16-0161.1)
Higgins, AK (1991) North Greenland glacier velocities and calf ice production. Polarforschung, 60(1), 123.
Hill, EA, Gudmundsson, GH, Carr, JR and Stokes, CR (2018) Velocity response of Petermann Glacier, northwest Greenland to past and future calving events. Cryosphere, 12(12), 39073921 (doi: 10.5194/tc-2018-162)
Hogg, AE, Shepherd, A, Gourmelen, N and Engdahl, M (2016) Grounding line migration from 1992 to 2011 on Petermann Glacier, North-West Greenland. J. Glaciol., 62(236), 11041114 (doi: 10.1017/jog.2016.83)
Holland, DM, Thomas, RH, De Young, B, Ribergaard, MH and Lyberth, B (2008) Acceleration of Jakobshavn Isbrae triggered by warm subsurface ocean waters. Nat. Geosci., 1(10), 659664 (doi: 10.1038/ngeo316)
Jackson, R and 8 others (2017) Near-glacier surveying of a subglacial discharge plume: implications for plume parameterizations. Geophys. Res. Lett., 44(13), 68866894 (doi: 10.1002/2017GL073602)
Jenkins, A (1991) A one-dimensional model of ice shelf-ocean interaction. J. Geophys. Res.: Oceans, 96(C11), 2067120677 (doi: 10.1029/91JC01842)
Jenkins, A (1999) The impact of melting ice on ocean waters. J. Phys. Oceanogr., 29(9), 23702381 (doi: 10.1175/1520-0485(1999)0292370:TIOMIO2.0.CO;2)
Jenkins, A (2011) Convection-driven melting near the grounding lines of ice shelves and tidewater glaciers. J. Phys. Oceanogr., 41(12), 22792294 (doi: 10.1175/JPO-D-11-03.1)
Jeofry, H and 8 others (2018) Hard rock landforms generate 130 km ice shelf channels through water focusing in basal corrugations. Nat. Commun., 9, 19 (doi: 10.1038/s41467-018-06679-z)
Johnson, H, Münchow, A, Falkner, K and Melling, H (2011) Ocean circulation and properties in Petermann Fjord, Greenland. J. Geophys. Res.: Oceans, 116, C01003 (doi: 10.1029/2010JC006519)
Joughin, IR, Tulaczyk, S and Engelhardt, HF (2003) Basal melt beneath Whillans ice stream and ice streams A and C, West Antarctica. Ann. Glaciol., 36, 257262 (doi: 10.3189/172756403781816130)
Kanzow, T, Send, U, Zenk, W, Chave, AD and Rhein, M (2006) Monitoring the integrated deep meridional flow in the tropical North Atlantic: long-term performance of a geostrophic array. Deep Sea Research Part I: Oceanographic Research Papers, 53(3), 528546 (doi: 10.1016/j.dsr.2005.12.007)
Krabill, W and 8 others (2002) Aircraft laser altimetry measurement of elevation changes of the Greenland ice sheet: technique and accuracy assessment. J. Geodyn., 34(3), 357376 (doi: 10.1016/S0264-3707(02)00040-6)
Le Brocq, AM and 10 others (2013) Evidence from ice shelves for channelized meltwater flow beneath the Antarctic Ice Sheet. Nat. Geosci., 6(11), 945948 (doi: 10.1038/NGEO1977)
Macdonald, GJ, Banwell, AF and MacAyeal, DR (2018) Seasonal evolution of supraglacial lakes on a floating ice tongue, Petermann Glacier, Greenland. Ann. Glaciol., 35, 110 (doi: 10.1017/aog.2018.9)
Mankoff, KD and 5 others (2016) Structure and dynamics of a subglacial discharge plume in a Greenlandic fjord. J. Geophys. Res.: Oceans, 121(12), 86708688 (doi: 10.1002/2016JC011764)
Marsh, OJ and 6 others (2016) High basal melting forming a channel at the grounding line of Ross Ice Shelf, Antarctica. Geophys. Res. Lett., 43(1), 250255 (doi: 10.1002/2015GL066612)
Moon, T, Joughin, I and Smith, B (2015) Seasonal to multiyear variability of glacier surface velocity, terminus position, and sea ice/ice mélange in northwest Greenland. J. Geophys. Res.: Earth Surf., 120(5), 818833 (doi: 10.1002/2015JF003494)
Motyka, RJ, Dryer, WP, Amundson, J, Truffer, M and Fahnestock, M (2013) Rapid submarine melting driven by subglacial discharge, LeConte Glacier, Alaska. Geophys. Res. Lett., 40(19), 51535158 (doi: 10.1002/grl.51011)
Motyka, RJ, Hunter, L, Echelmeyer, KA and Conner, C (2003) Submarine melting at the terminus of a temperate tidewater glacier, LeConte Glacier, Alaska, U.S.A. Ann. Glaciol., 36, 5765 (doi: 10.3189/172756403781816374)
Mouginot, J and 7 others (2015) Fast retreat of Zachariæ Isstrøm, northeast Greenland. Science, 350(6266), 13571361 (doi: 10.1126/science.aac7111)
Münchow, A and Melling, H (2008) Ocean current observations from Nares Strait to the west of Greenland: interannual to tidal variability and forcing. J. Mar. Res., 66(6), 801833 (doi: 10.1357/002224008788064612)
Münchow, A, Padman, L and Fricker, HA (2014) Interannual changes of the floating ice shelf of Petermann Gletscher, North Greenland, from 2000 to 2012. J. Glaciol., 60(221), 489499 (doi: 10.3189/2014JoG13J135)
Münchow, A, Padman, L, Washam, P and Nicholls, KW (2016) The ice shelf of Petermann Gletscher, North Greenland, and its connection to the Arctic and Atlantic Oceans. Oceanography, 29, 8495 (doi: 10.5670/oceanog.2016.101)
Nash, J and Moum, J (2005) River plumes as a source of large-amplitude internal waves in the coastal ocean. Nature, 437, 400403 (doi: 10.1038/nature03936)
Nicholls, KW and 5 others (2015) A ground-based radar for measuring vertical strain rates and time-varying basal melt rates in ice sheets and shelves. J. Glaciol., 61(230), 10791087 (doi: 10.3189/2015jog15j073)
Noël, B and 6 others (2016) A daily, 1 km resolution data set of downscaled Greenland ice sheet surface mass balance (1958-2015). Cryosphere, 10(5), 23612377 (doi: 10.5194/tc-10-2361-2016)
Padman, L, Siegfried, MR and Fricker, HA (2018) Ocean tide influences on the Antarctic and Greenland Ice Sheets. Rev. Geophys., 56(1), 142184 (doi: 10.1002/2016RG000546)
Rignot, E, Fenty, I, Xu, Y, Cai, C and Kemp, C (2015) Undercutting of marine-terminating glaciers in West Greenland. Geophys. Res. Lett., 42(14), 59095917 (doi: 10.1002/2015GL064236)
Rignot, E and Kanagaratnam, P (2006) Changes in the velocity structure of the Greenland Ice Sheet. Science, 311(5763), 986990 (doi: 10.1126/science.1121381)
Rignot, E and Steffen, K (2008) Channelized bottom melting and stability of floating ice shelves. Geophys. Res. Lett., 35, L02503 (doi: 10.1029/2007GL031765)
Schoof, C, Rada, C, Wilson, N, Flowers, G and Haseloff, M (2014) Oscillatory subglacial drainage in the absence of surface melt. Cryosphere, 8(3), 959976 (doi: 10.5194/tc-8-959-2014)
Shroyer, E, Padman, L, Samelson, R, Münchow, A and Stearns, LA (2017) Seasonal control of Petermann Gletscher ice-shelf melt by the ocean's response to sea-ice cover in Nares Strait. J. Glaciol., 63(238), 324330 (doi: 0.1017/jog.2016.140)
Stanton, T and 8 others (2013) Channelized ice melting in the ocean boundary layer beneath Pine Island Glacier, Antarctica. Science, 341(6151), 12361239 (doi: 10.1126/science.1239373)
Steffen, K and Schweiger, A (1991) NASA team algorithm for sea ice concentration retrieval from Defense Meteorological Satellite Program special sensor microwave imager: Comparison with Landsat satellite imagery. J. Geophys. Res.: Oceans, 96(C12), 2197121987.
Stevens, LA and 5 others (2016) Linking glacially modified waters to catchment-scale subglacial discharge using autonomous underwater vehicle observations. Cryosphere, 10, 417432 (doi: 10.5194/tc-10-417-2016)
Straneo, F and 8 others (2012) Characteristics of ocean waters reaching Greenland's glaciers. Ann. Glaciol., 53(60), 202210 (doi: 10.3189/2012AoG60A059)
Vaughan, DG (2012) Subglacial melt channels and fracture in the floating part of Pine Island Glacier, Antarctica. J. Geophys. Res.: Earth Surf., 117, F03012 (doi: 10.1029/2012JF002360)
Walker, RT and 5 others (2013) Ice-shelf tidal flexure and subglacial pressure variations. Earth. Planet. Sci. Lett., 361, 422428 (doi: 10.1016/j.epsl.2012.11.008)
Washam, P, Münchow, A and Nicholls, KW (2018) A decade of ocean changes impacting the ice shelf of Petermann Gletscher, Greenland. J. Phys. Oceanogr., 48, 24772493 (doi: 10.1175/JPO-D-17-0181.1)
Wilson, N, Straneo, F, Heimbach, P and Cenedese, C (2017) Satellite-derive submarine melt rates and mass balance for Greenland's largest remaining ice tongues. Cryosphere, 11, 27732782 (doi: 10.5194/tc-11-2773-2017)
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed