Skip to main content Accessibility help

Twenty years of cold surface layer thinning at Storglaciären, sub-Arctic Sweden, 1989-2009

  • Alessio Gusmeroli (a1) (a2), Peter Jansson (a3), Rickard Pettersson (a4) and Tavi Murray (a2)


This paper presents the changes in the thermal structure of the polythermal glacier Storglaciären, northern Sweden, over the 20 year period 1989-2009 derived by comparing maps of the depth of the englacial transition between cold ice (permanently frozen) and temperate ice (which contains water inclusions). The maps are based on interpreted ice-penetrating radar surveys from 1989, 2001 and 2009.

Complex thinning of the cold layer, first identified between 1989 and 2001, is still ongoing. A volume calculation shows that Storglaciären has lost one-third of its cold surface layer volume in 20 years, with a mean thinning rate of 0.80 ± 0.24 m a-1. We suggest that the thinning of the cold layer at Storglaciären is connected to the climatic warming experienced by sub-Arctic Scandinavia since the 1980s and we argue that repeated ice-penetrating radar surveys over the ablation area of polythermal glaciers offer a useful proxy for evaluating glacier responses to changes in climate.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Twenty years of cold surface layer thinning at Storglaciären, sub-Arctic Sweden, 1989-2009
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Twenty years of cold surface layer thinning at Storglaciären, sub-Arctic Sweden, 1989-2009
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Twenty years of cold surface layer thinning at Storglaciären, sub-Arctic Sweden, 1989-2009
      Available formats



Hide All
Aschwanden, A and Blatter, H (2009) Mathematical modeling and numerical simulation of polythermal glaciers. J. Geophys. Res., 114(F1), F01027 (doi: 10.1029/2008JF001028)
Barrett, BE, Nicholls, KW, Murray, T, Smith, AM and Vaughan, D (2009) Rapid recent warming on Rutford Ice Stream, West Antarctica, from borehole thermometry. Geophys. Res. Lett., 36(2), L02708 (doi: 10.1029/2008GL036369)
Björnsson, H and 6 others (1996) The thermal regime of sub-polar glaciers mapped by multi-frequency radio-echo sounding. J. Glaciol., 42(140), 23-32
Blatter, H (1987) On the thermal regime of an Arctic valley glacier: a study of White Glacier, Axel Heiberg Island, N.W.T., Canada. J. Glaciol., 33(114), 200-211
Blatter, H and Hutter, K (1991) Polythermal conditions in Arctic glaciers. J. Glaciol, 37(126), 261-269
Blatter, H and Kappenberger, G (1988) Mass balance and thermal regime of Laika ice cap, Coburg Island, N.W.T., Canada. J. Glaciol., 34(116), 102-110
Eisen, O, Bauder, A, Lüthi, M, Riesen, P and Funk, M (2009) Deducing the thermal structure in the tongue of Gornergletscher, Switzerland, from radar surveys and borehole measurements. Ann. Glaciol., 50(51), 63-70
Fountain, AG, Jacobel, RW, Schlichting, R and Jansson, P (2005) Fractures as the main pathways of water flow in temperate glaciers. Nature, 433(7026), 618-621
Gilbert, A, Wagnon, P, Vincent, C, Ginot, P and Funk, M (2010) Atmospheric warming at a high-elevation tropical site revealed by englacial temperatures at Illimani, Bolivia (6340 m above sea level, 16°S, 67°W). J. Geophys. Res, 115(D10), D10109 (doi: 10.1029/2009JD012961)
Gusmeroli, A (2010) Polythermal glacier dynamics at Storglaciaren, Arctic Sweden, inferred using in situ geophysical techniques. (PhD thesis, Swansea University)
Gusmeroli, A, Murray, T, Jansson, P, Pettersson, R, Aschwanden, A and Booth, AD (2010) Vertical distribution of water within the polythermal Storglaciaren, Sweden. J. Geophys. Res., 115(F4), F04002 (doi: 10.1029/2009JF001539)
Harrison, WD, Mayo, LR and Trabant, DC (1975) Temperature measurements on Black Rapids Glacier, Alaska, 1973. In Weller, G and Bowling, SA eds. Climate of the Arctic. Geophysical Institute, University of Alaska, Fairbanks, AK, 350-352
Holmlund, P and Eriksson, M (1989) The cold surface layer on Storglaciaren. Geogr. Ann., Ser. A, 71(3-4), 241-244
Holmlund, P, Jansson, P and Pettersson, R (2005) A re-analysis of the 58year mass-balance record of Storglaciären, Sweden. Ann. Glaciol., 42, 389-394
Hooke, RLeB, Gould, JE and Brzozowski, J (1983) Near-surface temperatures near and below the equilibrium line on polar and subpolar glaciers. Z. Gletscherkd. Glazialgeol., 19(1), 1-25
Huang, M (1990) On the temperature distribution of glaciers in China. J. Glaciol., 36(123), 210-216
Huggel, C (2009) Recent extreme slope failures in glacial environments: effects of thermal perturbation. Quat. Sci. Rev., 28(11-12), 1119-1130
Huss, M (2011) Present and future contribution of glacier storage change to runoff from macroscale drainage basins in Europe. Water Resour. Res., 47(W7), W0751 1 (doi: 10.1029/ 2010WR010299)
Hutter, K, Blatter, H and Funk, M (1988) A model computation of moisture content in polythermal glaciers. J. Geophys. Res., 93(B10), 12 205-12 214
Isaaks, EH and Srivastava, RM (1989) An introduction to applied geostatistics. Oxford University Press, New York
Iverson, NR, Hanson, B, Hooke, RLeB and Jansson, P (1995) Flow mechanism of glaciers on soft beds. Science, 267(5194), 80-81
Jansson, P and Pettersson, P (2007) Spatial and temporal characteristics of a long mass balance record, Storglaciaren, Sweden. Arct. Antarct. Alp. Res., 39(3), 432-437
Jarvis, GT and Clarke, GKC (1974) Thermal effects of crevassing on Steele Glacier, Yukon Territory, Canada. J. Glaciol., 13(68), 243-254
Le Meur, E and Vincent, C (2006) Monitoring of the Taconnaz ice fall (French Alps) using measurements of mass balance, surface velocities and ice cliff position. Cold Reg. Sci. Technol., 46(1), 1-11
Lemke, P and 10 others (2007) Observations: changes in snow, ice and frozen ground. In Solomon, S and 7 others eds. Climate change2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, 339-383
Murray, T and 6 others (2000) Glacier surge propagation by thermal evolution at the bed. J. Geophys. Res., 105(B6), 13491-13507
Ødegård, RS, Hagen, JO and Hamran, SE (1997) Comparison of radio-echo sounding (30-1000 MHz) and high-resolution borehole-temperature measurements at Finsterwalderbreen, southern Spitsbergen, Svalbard. Ann. Glaciol., 24, 262-267
Paterson, WSB (1972) Temperature distribution in the upper layers of the ablation area of Athabasca Glacier, Alberta, Canada. J. Glaciol., 11(61), 31-41
Pettersson, R (2005) Frequency dependence of scattering from the cold-temperate transition surface in a polythermal glacier. Radio Sci., 40(3), RS3007 (doi: 10.1029/2004RS003090)
Pettersson, R, Jansson, P and Holmlund, P (2003) Cold surface layer thinning on Storglaciaren, Sweden, observed by repeated ground penetrating radar surveys. J. Geophys. Res., 108(F1), 6004 (doi: 10.1029/2003JF000024)
Pettersson, R, Jansson, P and Blatter, H (2004) Spatial variability in water content at the cold-temperate transition surface of the polythermal Storglaciären, Sweden. J. Geophys. Res., 109(F2), F02009 (doi: 10.1029/2003JF000110)
Pettersson, R, Jansson, P, Huwald, H and Blatter, H (2007) Spatial pattern and stability of the cold surface layer of Storglaciären, Sweden. J. Glaciol., 53(180), 99-109
Rabus, BT and Echelmeyer, KA (2002) Increase of 10m ice temperature: climate warming or glacier thinning? J. Glaciol., 48(161), 279-286
Radic, V and Hock, R (2011) Regionally differentiated contribution of mountain glaciers and ice caps to future sea-level rise. Nature Geosci., 4(2), 91-94
Rippin, DM, Carrivick, JL and Williams, C (2011) Evidence towards a thermal lag in the response of Kårsaglaciären, northern Sweden, to climate change. J. Glaciol., 57(205), 895-903
Schytt, V (1968) Notes on glaciological activities in Kebnekaise, Sweden during 1966 and 1967. Geogr. Ann., 50A(2), 111-120
Vincent, C, Le Meur, E, Six, D, Possenti, P, Lefebvre, E and Funk, M (2007) Climate warming revealed by englacial temperatures at Col du Dome (4250 m, Mont Blanc area). Geophys. Res. Lett., 34(16), L16502 (doi: 10.1029/2007GL029933)
Wohlleben, T, Sharp, M and Bush, A (2009) Factors influencing the basal temperatures of a High Arctic polythermal glacier. Ann. Glaciol., 50(52), 9-16
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed