Skip to main content
×
×
Home

Two-dimensional electrical stratigraphy of the Siple Dome (Antarctica) ice core

  • Kendrick C. Taylor (a1) and Richard B. Alley (a2)
Abstract

A two-dimensional array of electrical conductivity measurements (ECM) has been used to image the acidity of the Siple Dome (Antarctica) ice core in a vertical plane. Annual layering and possible stratigraphic discontinuities are apparent. A brief disruption to the chemical stratigraphy is detected at 680 m. Below 800 m, weaker layering occurs and is interpreted as the result of post-depositional migration of chemical species. This technique provides a way to observe the horizontal continuity of chemical layers in an ice core and identify some types of flow irregularity.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Two-dimensional electrical stratigraphy of the Siple Dome (Antarctica) ice core
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Two-dimensional electrical stratigraphy of the Siple Dome (Antarctica) ice core
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Two-dimensional electrical stratigraphy of the Siple Dome (Antarctica) ice core
      Available formats
      ×
Copyright
References
Hide All
Alley, R. B. 1992. Flow-law hypotheses for ice-sheet modeling. J. Glaciol., 38(129), 245-256.
Alley, R. B., Perepezko, J. H. and Bentley, C. R.. 1986. Grain growth in polar ice: II. Application. J. Glaciol., 32(112), 425-433.
Alley, R. B., Gow, A.J., Johnsen, S.J., Kipfstuhl, J., Meese, D. A. and Thorsteinsson, Th.. 1995. Comparison of deep ice cores. Nature, 373 (65513), 393-394.
Baker, I. and Cullen, D.. 2002. The structure and chemistry of 94m Greenland Ice Sheet Project 2 ice. Ann. Glacial. 35, 224-230.
Barnes, P. R. F, Wolff, E.W., Mader, H. M., Udist, R., Castellano, E. and Röthlisberger, R.. 2003. Evolution of chemical peak shapes in the Dome C, Antarctica, ice core. J. Geophys. Res. 108 (D3). (10.1029/2002JD002538.)
Budd, W. F. and Jacka, T. H.. 1989. A review of ice rheology for ice sheet modeling. ColdReg. Sci. Technol., 16 (2), 107-144.
Fisher, D. A. 1987. Enhanced flow of Wisconsin ice related to solid conductivity through strain history and recrystallization. International Association of Hydrological Sciences Publication 170 (Symposium at Vancouver, 1987 – The Physical Basis of Ice Sheet Modelling), 45-51.
Glen, J. W., Homer, D. R. and Paren, J. G.. 1975. Water at grain boundaries: its role in the purification of temperate glacial ice. International Association of Hydrological Sciences Publication 118 (Isotopes and Impurities in Snow and Ice), 263-271.
Hammer, C. U. 1983. Initial direct current in the buildup of space charges and the acidity of ice cores. J. Phys. Chem., 87 (21), 4099-4103.
Moore, J. C., Wolff, E.W., Clausen, H.B. and Hammer, C. U.. 1992. The chemical basis for the electrical stratigraphy of ice. J. Geophys. Res., 97 (B2), 1887-1896.
Rempel, A. W., Wettlaufer, J. S. and Waddington, E. D.. 2002. Anomalous diffusion of multiple impurity species: predicted implications for the ice core climate records. J. Geophys. Res., 107(B12), 2330 [ECV3-1 to ECV3- 12]. (101029/2002JB001857.)
Severinghaus, J. P., Grachev, A., Luz, B. and Caillon, N.. 2003. A method for precise measurement of argon 40/36 and krypton/argon ratios in trapped air in polar ice with applications to past firn thickness and abrupt climate change in Greenland and at Siple Dome, Antarctica. Geochim. Cosmochim. Acta, 67 (2), 325-343.
Taylor, K. and 6 others. 1992. Ice-core dating and chemistry by direct-current electrical conductivity. J. Glaciol., 38(130), 325-332.
Taylor, K. C. and 9 others. 1993. Electrical conductivity measurements from the GISP2 and GRIP Greenland ice cores. Nature, 366 (6455), 549-552.
Taylor, K. C. and 13 others. 2004. Abrupt late glacial climate change in the Pacific sector of Antarctica. Quat. Sci. Rev. 23 (1), 7-15.
Wolff, E., Mulvaney, R. and Oates, K.. 1988. The location of impurities in Antarctic ice. Ann. Glaciol. 11, 194-197
Wolff, E., Basile, I., Petit, J.-R., and Schwander, J.. 1999. Comparison of Holocene electrical records from Dome C and Vostok, Antarctica. Ann. Glaciol. 29, 89-93.
Zheng, J., Kudo, A., Fisher, D. A., Blake, E.W. and Gerasimoff, M.. 1998. Solid electrical conductivity (ECM) from four Agassiz ice cores, Ellesmere Island NWT, Canada: high resolution signal and noise over the last millennium and low resolution over the Holocene. The Holocene, 8(4), 413-421.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed