Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-29T13:56:49.865Z Has data issue: false hasContentIssue false

In vitro nematicidal activity of extracts of Canthium mannii (Rubiaceae), on different life-cycle stages of Heligmosomoides polygyrus (Nematoda, Heligmosomatidae)

Published online by Cambridge University Press:  04 September 2009

J. Wabo Poné*
Affiliation:
Department of Animal Biology, Faculty of Science, University of Dschang, PO Box 067, Dschang, Cameroon
C.F. Bilong Bilong
Affiliation:
Department of Animal Biology and Physiology, Faculty of Science, University of Yaounde 1, PO Box 812, Yaounde, Cameroon
M. Mpoame
Affiliation:
Department of Animal Biology, Faculty of Science, University of Dschang, PO Box 067, Dschang, Cameroon

Abstract

The increasing prevalence of anthelmintic-resistant strains of helminths, drug residues in animal products and high cost of conventional anthelmintics has created an interest in studying medicinal plants as an alternative source of anthelmintic. The potential nematicidal activities of four extracts from the bark of Canthium mannii (Rubiaceae) stem were investigated in vitro. Extracts were diluted in distilled water (DW) to obtain five different concentrations (1.5, 2.0, 2.5, 3.0 and 3.5 mg/ml) and put in contact with eggs and larvae of Heligmosomoides polygyrus. The different stages of the life cycle were also put in contact with the same concentration of mebendazole (MBZ, positive control). One millilitre of each extract at different concentrations and control were added to 1 ml solution containing 30–40 eggs or 10–15 larvae (L1, L2 and L3) and distributed in different Petri dishes. The eggs and larvae were incubated at 24°C and exposure times were: 48 h for un-embryonated eggs, 6 h for embryonated eggs; 2, 4, 6 and 24 h for L1 and L2 larvae, 24–48 h for infective larvae (L3), and 5 days for the larval development test (from L1 to L3). DW and 1% dimethyl sulphoxide (DMSO) were used as placebo and DMSO control, respectively. Significant effects were obtained with three of the four extracts, and differences were observed depending on the parasite stage. Cold water extract (CWE), hot water extract (HWE) and ethanol extract (ETE) inhibited embryonic development (40, 45 and 10%) and hatching of embryonated eggs (40, 85 and 80%), respectively, at 3.5 mg/ml. Only ETE killed L1 (97.18%) and L2 (92.68%) larvae of H. polygyrus after 24 h at 3.5 mg/ml and drastically reduced the production rate (6% at 3.0 and 3.5 mg/ml) of infective larvae (L3) after 5 days of incubation compared to other extracts (P < 0.05). However, the infective larvae of H. polygyrus were resistant to the effect of each of the tested products (extracts and mebendazole). These in vitro results suggested that extracts of C. mannii, used by traditional healers in Dschang, Western Region of Cameroon (Central Africa) to cure intestinal helminthiasis and abdominal pains of their patients, possess nematicidal properties. The active principles responsible for the activity could be secondary metabolites such as alkaloids and saponins present in the extracts. It is suggested that further experiments incorporating in vivo purification of extracts and toxicological investigations should be carried out.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ademola, I.O. (2002) A survey on ivermectin resistance in strongyles of sheep in Oyo state Nigeria using larval development. Israeli Journal of Veterinary Medicine 54, 247252.Google Scholar
Adjanohoun, J.E., Aboubakar, N., Dramame, K., Ebat, M.E., Ekpére, J.A., Enoworock, E.G., Focho, D., Cibile, Z.O., Kamanyi, A., Kamsu kom, J., Keita, A., Mbenkum, T., Mbi, L.N., Mbiele, A.L., Mbomé, L.C., Mubiri, W.K., Nancy, W.L., Kongmeneck, B., Satabie, B., Sofovora, A., Tamze, V. & Wirmum, C.K. (1995) Traditional medicine and pharmacopoeia. Contribution to ethnobotanica and floristic studies in Cameroon. 569 pp. Yaoundé, Cameroun, Centre National de Production de Manuels Scolaires (CNPMS).Google Scholar
Alawa, C.B.F., Adamu, A.M., Gefu, J.O., Ajanusi, O.J., Abdu, P.A., Chiezey, N.P., Alawa, J.N. & Bowman, D.D. (2003) In vitro screening of two medicinal plants (Vernonia amygdalina and Annona senegalensis) for anthelmintic activity. Veterinary Parasitology 1, 7381.CrossRefGoogle Scholar
Assis, L.M., Bevilaqua, C.M.L.S., Moraisa, M., Vieirab, L.S., Costar, C.T.C. & Souzaa, J.A.L. (2003) Ovicidal and larvicidal activity in vitro of Spigelia anthelmia extracts on Haemonchus contortus. Veterinary Parasitology 117, 4344.CrossRefGoogle ScholarPubMed
Balansard, G., Maillard, C. & Vidal-Ollivier, E. (1991) Méthodes d'extraction en vue d'obtenir des extraits ou produits purs à partir des plantes médicinales. 18 pp. Paris, France, Editions Techniques. Phytothérapie, Aromathérapie.Google Scholar
Boisvenue, R.J., Brand, M.C., Galloway, R.B. & Hendrix, J.C. (1983) In vitro activity of various anthelmintic compounds against Haemonchus contortus larvae. Veterinary Parasitology 13, 341347.CrossRefGoogle ScholarPubMed
Busindou, M. (1997) Enquête sur la phytothérapie traditionnelle à Kindamba et Odzala (Congo) et analyse des convergences d'usage des plantes médicinales en Afrique centrale. 482 pp. Doctoral thesis, Université Libre de Bruxelles.Google Scholar
Cheesbrough, M. (1987) Medical laboratory manual for tropical countries. 2nd edn. 605 pp. Cambridge, Cambridge University Press.Google Scholar
Cirak, U.Y., Crulegen, E. & Baner, C. (2004) Benzimidazole resistance in Cyathosmin populations on horse farm in western Anatobia, Turkey. Parasitology Research 93, 392395.CrossRefGoogle Scholar
Ciulei, I. (1982) Methodology for analysis of vegetable drugs, practical and aromatic plants. 67 pp. Bucharest, Romania.Google Scholar
Dobson, R.J., Donal, A.D., Waller, P.J. & Snowdon, K.L. (1986) An egg-hatch assay for resistance to levamisole in trichostrongyloid nematode parasites. Veterinary Parasitology 19, 7784.CrossRefGoogle ScholarPubMed
Dupouy-Camet, J. (2000) Le traitement de la trichinellose. Pyrexie 4, 117121.Google Scholar
Elard, L. (2000) La résistance aux benzimidazoles chez Tladorsagia circumcincta, nématode parasite de petits ruminants. Etude du déterminisme génétique et recherches des conséquences sur la fitness des parasites. 200 pp. Doctoral thesis, Université de Tours, Paris.Google Scholar
Euzeby, J. (1981) Diagnostic expérimental des helminthoses animales (animaux domestiques, animaux de laboratoire, Primate). Travaux pratiques d'helminthologie vétérinaire. Livre 1 généralités. Diagnostic ante mortem. 349 pp. Paris, Edition ‘informations techniques des services vétérinaires’.Google Scholar
Githiori, J.B. (2004) Evaluation of anthelmintic properties of ethnoveterinary plant preparations used as livestock dewormers by pastoralist and small holder farmers in Kenya. 76 pp. Doctoral dissertation, Department of Biomedical Sciences and Veterinary Public Health, Acta Universitatis Agricultural sulciae.Google Scholar
Githiori, J.B., Hoglund, J., Waller, P.J. & Baker, R.L. (2003a) The anthelmintic efficacy of the plant, Albizia anthelmintica, against the nematode parasites Heamonchus contortus of sheep and Heligmosomoides polygyrus of mice. Veterinary Parasitology 116, 2334.CrossRefGoogle Scholar
Githiori, J.B., Hoglund, J., Waller, P.J. & Baker, R.L. (2003b) Evaluation of anthelmintic properties of extracts from some plants used as livestock dewormers by pastoralist and small holder farmers in Kenya against Heligmosomoides polygyrus infections in mice. Veterinary Parasitolology 118, 215226.CrossRefGoogle Scholar
Gunasegaran, R., Subramani, K., Azantha Parimala, P., Ramachandra Nair, A.G., Rodriguez, C.T.C. & Souzaa, J.A.L. (2003) Ovicidal and larvicidal activity in vitro of Spigelia anthelmia extracts on Haemonchus contortus. Veterinary Parasitology 117, 4344.Google Scholar
Hubert, J. & Kerboeuf, D. (1992) A microlarval development assay for the detection of anthelmintic resistance in sheep nemode. Veterinary Record 130, 442446.CrossRefGoogle Scholar
Ibarra, O.F. & Jenkins, D.C. (1984) The relevance of in vitro anthelmintic screening tests employing the free-living stages of trichostrongylid nematodes. Journal of Helmintholology 58, 107112.CrossRefGoogle ScholarPubMed
Kanchanapoom, T., Kasai, R. & Yamasaki, K. (2002) Iridoid and phenolic diglycosides from Canthium berberidifolium. Phytochemistry 61, 461464.CrossRefGoogle ScholarPubMed
Lans, C. & Brown, G. (1998) Ethnoveterinary medicines used for ruminants in Trinidad and Tobago. Preventive Veterinary Medicine 35, 149163.CrossRefGoogle ScholarPubMed
Magdeleine, M.C., Hoste, H., Mathieu, M., Varo, H. & Archimède, H. (2009) In vitro effects of Cucurbita moschata extracts on Haemonchus contortus. Veterinary Parasitology 161, 99105.CrossRefGoogle Scholar
Matthee, S., Dreyer, F.H., Hoffmann, W.A. & Van Niekerk, F.E. (2002) An introductory survey of helminth control practice in South Africa and anthelmintic resistance on thoroughbred farms in the western Cape Province. Journal of the South Africa Veterinary Association 73, 195200.CrossRefGoogle ScholarPubMed
McGaw, L., Jager, A.K. & Van Staden, J. (2000) Antibacterial, anthelmintic and antiamoebic activity in South African medicinal plants. Journal of Ethnopharmacology 72, 247263.CrossRefGoogle ScholarPubMed
Michael, B., Meinke, T.P. & Shoop, W. (2001) Comparison of ivermectin, doramectin, selamectin and eleven intermediates in a nematode larval development assay. Journal of Parasitology 87, 692696.CrossRefGoogle Scholar
Mpoame, M. & Essomba, I. (2000) Essai de traitement contre des parasitoses gastro-intestinales du poulet avec les décoctions aqueuses de graines de papaye (Carica papaya). Revue d'Elevage et de Médecine Vétérinaire des Pays Tropicaux 53, 2325.Google Scholar
Ndao, M., Belot, J., Zinsstag, J. & Pfister, K. (1995) Epidémiologie des helminthiases gastro-intestinales des petits ruminants dans la zone sylvo-pastorale au Sénégal. Veterinary Record 36, 132139.Google Scholar
Noritaka, H., Tavo, O. & Viazulito, H. (2000) Challenge trial on the anthelmintic effect of drugs and natural agents against the monogenean Heterobothrium okamotoi in the tiger puffer Tokipugu rubripes. Aquaculture 18, 113.Google Scholar
Oliveira, L.M.B., Bevilaqua, C.M.L., Costa, C.T.C., Macedo, I.T.F., Barros, R.S., Rodrigues, A.C.M., Cumurça-Vasconcelos, A.L.F., Morais, S.M., Lima, Y.C., Vieira, L.S. & Navarro, A.M.C. (2009) Anthelmintic activity of Cocos nucifera L. against sheep gastrointestinal nematodes. Veterinary Parasitology 159, 5559.CrossRefGoogle ScholarPubMed
Pessoa, L.M., Movais, S.M., Bevilaqua, C.M.L. & Luciano, J.H.S. (2002) Anthelmintic activity of essential oil of Ocimum gratissimum L. and euguenol against Heamonchus. Veterinary Parasitology 24, 15.Google Scholar
Quilan, M.B., Quinlan, R.J. & Nolan, J.M. (2002) Ethnophysiology and herbal treatments of intestinal worms in Dominica, West Indies. Journal of Ethnopharmacolology 103, 183194.Google Scholar
Sangster, N.C. (1999) Anthelmintic resistance: past, present and future. International Journal of Parasitology 29, 115124.CrossRefGoogle ScholarPubMed
Satrija, F., Retnani, E.B., Ridwan, Y. & Tiuria, R. (2001) Potential use of herbal anthelmintics as alternative antiparasitic drugs for small holders in developing countries. Proceedings of the 10th Conference of the Association of Institutions for Tropical Veterinary Medicine. 20–23 August. Copenhagen, Denmark.Google Scholar
Sinha, H.K., Sivastava, P.S., Singh, S.P., Sinha, K.V. & Sinha, S.R. (1987) Efficacy of various anthelmintics on the mortality of the infective larva of Toxocara vitulorum and treatment of calf ascariasis. Indian Journal of Animal Science 57, 185188.Google Scholar
Smyth, J.D. (1996) Animal parasitology. 549 pp. London, Cambridge University Press.Google Scholar
Tariq, K.A., Chishti, M.Z., Ahmad, F. & Shawl, A.S. (2009) In vitro effects of Cucurbita moschata seed extracts on Haemonchus contortus. Veterinary Parasitology 161, 99105.Google Scholar
Taylor, M.A. (1990) A larval development test for the detection of anthelmintic resistance in nematodes of sheep. Research Veterinary Science 49, 198202.CrossRefGoogle ScholarPubMed
Taylor, M.A., Hunt, K.R. & Goodyear, K.L. (2002) Anthelmintic resistance detection methods. Veterinary Parasitology 103, 183194.CrossRefGoogle ScholarPubMed
Wabo Poné, J. (2001) Etude comparée in vitro de l'activité anthelminthique de l'extrait éthanolique de la poudre d'écorce de Canthium mannii (Rubiaceae) et du telkan. 45 pp. Cameroun, Mémoire de DEA, Département de Biologie et Physiologie Animales, Université de Yaoundé 1.Google Scholar
Wabo Poné, J. (2007) Effets des extraits de Canthium mannii Hiern, 1877 (Rubiacées) sur deux nématodes parasites strongylides: Ancylostoma caninum Ercolani, 1859 et Heligmosomoides polygyrus Dujardin, 1845. 155 pp. Unpublished PhD thesis, Département de Biologie et Physiologie Animales, Faculté des Sciences, Université de Yaoundé 1, Cameroun.Google Scholar
Wabo Poné, J., Mpoame, M., Bilong Bilong, C.F. & Kerboeuf, D. (2005) Etude comparée in vitro de l'activité anthelminthique de l'extrait éthanolique de la poudre d'écorce de Canthium mannii (Rubiaceae) et du Mébendazole. Revue de Médecine Vétérinaire 15, 633636.Google Scholar
Wabo Poné, J., Bilong Bilong, C.F., Mpoame, M., Fusi-Ngwa, C. & Coles, C.G. (2006) In vitro activity of ethanol, cold and hot water extracts of the stem bark of Canthium mannii (Rubiaceae) on Ancylostoma caninum eggs. East and Central African Journal of Pharmaceutical Sciences 9, 1418.Google Scholar
Wolstenholme, A.J., Fairweather, I., Prichard, R., Von Samson-Himmelstjerna, G. & Songster, N.C. (2004) Drug resistance in veterinary helminths. Trends in Parasitolology 20, 469476.CrossRefGoogle ScholarPubMed