Skip to main content
×
×
Home

Twisted homological stability for extensions and automorphism groups of free nilpotent groups

  • Markus Szymik (a1)
Abstract

We prove twisted homological stability with polynomial coefficients for automorphism groups of free nilpotent groups of any given class. These groups interpolate between two extremes for which homological stability was known before, the general linear groups over the integers and the automorphism groups of free groups. The proof presented here uses a general result that applies to arbitrary extensions of groups, and that has other applications as well.

Copyright
Corresponding author
szymik@math.ku.dk
References
Hide All
And65.Andreadakis, S.. On the automorphisms of free groups and free nilpotent groups. Proc. London Math. Soc. 15 (1965), 239268.
Arn69.Arnold, V.I.. The cohomology ring of the colored braid group. Math. Not. Acad. Sci. USSR 5 (1969), 138140.
Arn70.Arnold, V.I.. On some topological invariants of algebraic functions. Trans. Moscow Math. Soc. 21 (1970), 3052.
Bas64.Bass, H.. K-theory and stable algebra. Inst. Hautes Études Sci. Publ. Math. No. 22 (1964), 560.
Bet02.Betley, S.. Twisted homology of symmetric groups. Proc. Amer. Math. Soc. 130 (2002), 34393445.
Bor74.Borel, A.. Stable real cohomology of arithmetic groups. Ann. Sci. École Norm. Sup. 7 (1974), 235272.
Bri73.Brieskorn, E.. Sur les groupes de tresses [d'après V.I. Arnol'd]. Séminaire Bourbaki 24ème année (1971/1972), Exp. 401, 2144. Lecture Notes in Math 317. Springer, Berlin, 1973.
Cha80.Charney, R.. Homology stability for GLn of a Dedekind domain. Invent. Math. 56 (1980), 117.
CF13.Church, T., Farb, B.. Representation theory and homological stability. Adv. Math. 245 (2013), 250314.
CLM72.Cohen, F.R., Lada, T.J., May, J.P.. The homology of iterated loop spaces. Lecture Notes in Mathematics 533, Springer-Verlag, Berlin, 1976.
Dwy80.Dwyer, W.G.. Twisted homological stability for general linear groups. Ann. of Math. 111 (1980), 239251.
Hat95.Hatcher, A.. Homological stability for automorphism groups offree groups. Comment. Math. Helv. 70 (1995), 3962.
HV98a.Hatcher, A., Vogtmann, K.. Cerf theory for graphs. J. London Math. Soc. 58 (1998)čň 633655.
HV98b.Hatcher, A., Vogtmann, K.. Rational homology of Aut(Fn). Math. Res. Lett. 5 (1998), 759780.
HW10.Hatcher, A., Wahl, N.. Stabilization for mapping class groups of 3-manifolds. Duke Math. J. 155 (2010), 205269.
Hop42.Hopf, H.. Fundamentalgruppe und zweite Bettische Gruppe. Comment. Math. Helv. 14 (1942), 257309.
Joh83.Johnson, D.. A survey of the Torelli group. Contemp. Math. 20 (1983), 165179.
vdK80.van der Kallen, W.. Homology stability for linear groups. Invent. Math. 60 (1980), 269295.
Kas03.Kassabov, M.D.. On the automorphism tower of free nilpotent groups. Thesis, Yale University, 2003.
LS75.Lam, T.Y., Siu, M.K.. K0 and K1—an introduction to algebraic K-theory. Amer. Math. Monthly 82 (1975), 329364.
Mac95.Macdonald, I.G.. Symmetric functions and Hall polynomials. Second edition. With contributions by A. Zelevinsky. Oxford Mathematical Monographs. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1995.
Mag32.Magnus, W.. Beziehungen zwischen Gruppen und Idealen in einem speziellen Ring. Math. Ann. 111 (1935), 259280.
Mor93.Morita, S.. The extension of Johnson's homomorphism from the Torelli group to the mapping class group. Invent. Math. 111 (1993), 197224.
Nak60.Nakaoka, M.. Decomposition theorem for homology groups of symmetric groups. Ann. of Math. 71 (1960), 1642.
Pir00a.Pirashvili, T.. Dold-Kan type theorem for Γ-groups. Math. Ann. 318 (2000), 277298.
Pir00b.Pirashvili, T.. Hodge decomposition for higher order Hochschild homology. Ann. Sci. École Norm. Sup. 33 (2000), 151179.
Ser06.Serre, J.-P.. Lie algebras and Lie groups. Lectures given at Harvard University 1964. Corrected fifth printing of the second (1992) edition. Lecture Notes in Mathematics 1500, Springer-Verlag, Berlin, 2006.
Sus82.Suslin, A.A.. Stability in algebraic K-theory. Algebraic K-theory, Part I (Oberwolfach, 1980) 304333. Lecture Notes in Math. 966, Springer, Berlin, 1982.
Ver99.Vershinin, V.V.. Braid groups and loop spaces. Russian Math. Surveys 54 (1999), 273350.
Ver06.Vershinin, V.V.. Braids, their properties and generalizations. Handbook of algebra 4, 427465, Handb. Algebr. 4, Elsevier/North-Holland, Amsterdam, 2006.
Wag76.Wagoner, J.B.. Stability for homology of the general linear group of a local ring. Topology 15 (1976), 417423.
Wag77.Wagoner, J.B.. Equivalence of algebraic K-theories. J. Pure Appl. Algebra 11 (1977), 245269.
Wit56.Witt, E.. Die Unterringe der freien Lieschen Ringe. Math. Z. 64 (1956), 195216.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of K-Theory
  • ISSN: 1865-2433
  • EISSN: 1865-5394
  • URL: /core/journals/journal-of-k-theory
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 6 *
Loading metrics...

Abstract views

Total abstract views: 90 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 21st July 2018. This data will be updated every 24 hours.