Skip to main content Accessibility help
×
Home

Topical chemoprevention of skin cancer in mice, using combined inhibitors of 5-lipoxygenase and cyclo-oxygenase-2

  • L Fegn (a1) (a2) and Z Wang (a1)

Abstract

Objective:

Skin cancer is the most common cancer, and often occurs in the head and neck region. This study aimed to investigate whether a combination of inhibitors of cyclo-oxygenase-2 and 5-lipoxygenase, applied via a microemulsion delivery system, would be effective in topically inhibiting skin carcinogenesis.

Study design:

Randomised animal study.

Methods:

Twenty-four nude mice were intradermally inoculated with carcinoma cells and then divided into three groups (eight animals each): group one received no treatment; group two received celecoxib alone; and group three received a combination of zileuton and celecoxib. Tumour incidence and growth were measured for 14 days.

Results:

Both treatments significantly delayed the onset and development of tumours. However, the combined treatment had the best response (p < 0.01).

Conclusion:

The results clearly showed that topical treatment with either celecoxib alone or celecoxib plus zileuton significantly inhibited skin carcinogenesis, and that a combination of both agents had the best results.

Copyright

Corresponding author

Address for correspondence: Dr Zhi Wang, 820 Harrison Ave 4014, Boston, MA 02118, USA. Fax: +1 617 414 1591 E-mail: zwang@bu.edu

Footnotes

Hide All

Presented as a poster at the 14th European Cancer Conference, 23–27 September 2007, Barcelona, Spain.

Footnotes

References

Hide All
1 Jemal, A, Siegel, R, Ward, E, Murray, T, Xu, J, Thun, MJ. Cancer statistics, 2007. CA Cancer J Clin 2007;57:4366
2 Tsao, AS, Kim, ES, Hong, WK. Chemoprevention of cancer. CA Cancer J Clin 2004;54:150–80
3 Wang, W, Polavaram, R, Shapshay, SM. Topical inhibition of oral carcinoma cell with polymer delivered celecoxib. Cancer Lett 2003;198:53–8
4 Wilgus, TA, Koki, AT, Zweifel, BS, Rubal, PA, Oberyszyn, TM. Chemotherapeutic efficacy of topical celecoxib in a murine model of ultraviolet light B-induced skin cancer. Mol Carcinog 2003;38:33–9
5 Wilgus, TA, Breza, TS Jr, Tober, KL, Oberyszyn, TM. Treatment with 5-fluorouracil and celecoxib displays synergistic regression of ultraviolet light B-induced skin tumors. J Invest Dermatol 2004;122:1488–94
6 Steele, VE, Holmes, CA, Hawk, ET, Kopelovich, L, Lubet, RA, Crowell, JA et al. Lipoxygenase inhibitors as potential cancer. Chemopreventives. Cancer Epidemiol Biomarkers Prev 1999;8:467–83
7 Ye, YN, Wu, WK, Shin, VY, Bruce, IC, Wong, BC, Cho, CH. Dual inhibition of 5-LOX and COX-2 suppress colon cancer formation promoted by cigarette smoke. Carcinogenesis 2005;26:827–34
8 Li, N, Sood, S, Wang, S, Fang, M, Wang, P, Sunet, Z et al. Overexpression of 5-lipoxygenase and cyclooxygenase 2 in hamster and human oral cancer and chemopreventive effects of zileuton and celecoxib. Clin Cancer Res 2005;11:2089–96
9 Yan, Y, Wang, B, Zuo, YG, Qu, T. Inhibitory effects of mizolastine on ultraviolet B-induced leukotriene B4 production and 5-lipoxygenase expression in normal human dermal fibroblasts in vitro. Photochem Photobiol 2006;82:665–9
10 Subramanian, N, Ghosal, SK, Moulik, SP. Topical delivery of celecoxib using microemulsion. Acta Pol Pharm 2004;61:335–41
11 Shureiqi, I, Lippman, M. Lipoxygenase modulation to reverse carcinogenesis. Cancer Res 2001;61:6307–12
12 Ara, G, Teicher, BA. Cyclooxygenase and lipoxygenase inhibitors in cancer therapy. Prostaglandins Leukot Essent Fatty Acids 1996;54:316
13 Wilgus, TA, Koki, AT, Zweifel, BS, Kusewitt, DF, Rubal, PA, Oberyszyn, TM. Inhibition of cutaneous ultraviolet light B-mediated inflammation and tumor formation with topical celecoxib treatment. Mol Carcinog 2003;38:4958
14 Buchanan, FG, Wang, D, Bargiacchi, F, DuBois, RN. Prostaglandin E2 regulates cell migration via the intracellular activation of the epidermal growth factor receptor. J Biol Chem 2003;278:35451–7
15 Pentland, AP, Schoggins, JW, Scott, GA, Khan, KN, Han, R. Reduction of UV induced skin tumors in hairless mice by selective COX-2 inhibition. Carcinogenesis 1999;20:1939–44
16 Hebert, MJ, Takano, T, Holthofer, H, Brady, HR. Sequential morphologic events during apoptosis of human neutrophils. Modulation by lipoxygenase-derived eicosanoids. J Immunol 1996;157:3105–15
17 Read, NG, Astbury, PJ, Evans, GO, Goodwin, DA, Rowlands, A. Nephrotic syndrome associated with N-hydroxyureas, inhibitors of 5-lipoxygenase. Arch Toxicol 1995;69:480–90
18 Sun, Z, Sood, S, Li, Z, Ramji, D, Yang, P, Newman, RA et al. Involvement of the 5-lipoxygenase/leukotriene A4 hydrolase pathway in 7,12-dimethylbenz[a]anthracene (DMBA)-induced oral carcinogenesis in hamster cheek pouch, and inhibition of carcinogenesis by its inhibitors. Carcinogenesis 2006;27:1902–8
19 Yener, G, Gonullu, U, Uner, M, Degim, T, Araman, A. Effect of vehicles and penetration enhancers on the in vitro percutaneous absorption of celecoxib through human skin. Pharmazie 2003;58:330–3
20 Natesan, S, Saroj, SG, Asis, A, Satya, PM. Formulation and physicochemical characterization of microemulsion system using isopropyl myristate, medium-chain glyceride, polysorbate 80 and water. Chem Pharm Bull 2005;53:1530–5

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed