Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-30T04:33:07.965Z Has data issue: false hasContentIssue false

Effect of severe plastic deformation on tensile and fatigue properties of fine-grained magnesium alloy ZK60

Published online by Cambridge University Press:  24 July 2017

Alexei Vinogradov*
Affiliation:
Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology - NTNU, Trondheim 7491, Norway; and Institute of Advanced Technologies, Togliatti State University, Togliatti 445020, Russia
*
a) Address all correspondence to this author. e-mail: alexei.vinogradov@ntnu.no
Get access

Abstract

Complex wrought magnesium-based alloys suffer from poor ductility, strong yield asymmetry, and lower than desired fatigue performance. These unfavourable properties are exacerbated by the heterogeneity of the microstructure and strong texture forming in Mg alloys during conventional thermo-mechanical processing. For the user, severe plastic deformation (SPD) increases flexibility in tailoring the microstructures and selecting the properties to be emphasized in wrought Mg alloys. The effect of SPD by hot multiaxial forging and equal channel angular pressing on the formation of fine grain microstructure and on resultant mechanical properties is discussed. It is demonstrated that SPD is capable of substantial enhancement in ductility and tensile strength which gives rise to concurrent improvement of both low- and high-cycle fatigue properties. The main message of this overview is that the full potential for improving fatigue performance of Mg alloys can be taken advantage of by way of comprehensive understanding the role of the individual effects associated with the SPD-induced microstructures and textures.

Type
Review
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Yuntian Zhu

Dedicated to Professor Dr. Haël Mughrabi on the occasion of his 80th birthday. It is my pleasure and honor to dedicate this paper to Professor Haël Mughrabi, who has been a mentor and a colleague to me over the years, in appreciation of his outstanding contributions and accomplishments in the area of fatigue of advanced materials.

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.

References

REFERENCES

Mughrabi, H.: On the grain-size dependence of metal fatigue: Outlook on the fatigue of ultrafine-grained metals. In Investigations and Applications of Severe Plastic Deformation, Lowe, T. and Valiev, R., eds. (Springer, Netherlands, Amsterdam, 2000); p. 241.Google Scholar
Kunz, L., Lukas, P., and Svoboda, A.: Fatigue strength, microstructural stability and strain localization in ultrafine-grained copper. Mater. Sci. Eng., A 424(1–2), 97 (2006).Google Scholar
Höppel, H.W., Zhou, Z.M., Mughrabi, H., and Valiev, R.Z.: Microstructural study of the parameters governing coarsening and cyclic softening in fatigued ultrafine-grained copper. Philos. Mag. A 82(9), 1781 (2002).Google Scholar
Vinogradov, A. and Hashimoto, S.: Multiscale phenomena in fatigue of ultra-fine grain materials—An overview. Mater. Trans., JIM 42(1), 74 (2001).Google Scholar
May, J., Dinkel, M., Amberger, D., Höppel, H.W., and Göken, M.: Mechanical properties, dislocation density and grain structure of ultrafine-grained aluminum and aluminum–magnesium alloys. Metall. Mater. Trans. A 38(9), 1941 (2007).Google Scholar
Höppel, H.W., Kautz, M., Xu, C., Murashkin, M., Langdon, T.G., Valiev, R.Z., and Mughrabi, H.: An overview: Fatigue behaviour of ultrafine-grained metals and alloys. Int. J. Fatigue 28(9), 1001 (2006).Google Scholar
Patlan, V., Higashi, K., Kitagawa, K., Vinogradov, A., and Kawazoe, M.: Cyclic response of fine grain 5056 Al–Mg alloy processed by equal-channel angular pressing. Mater. Sci. Eng., A 319, 587 (2001).CrossRefGoogle Scholar
Chung, C.S., Kim, J.K., Kim, H.K., and Kim, W.J.: Improvement of high-cycle fatigue life in a 6061 Al alloy produced by equal channel angular pressing. Mater. Sci. Eng., A 337(1–2), 39 (2002).CrossRefGoogle Scholar
Vinogradov, A., Washikita, A., Kitagawa, K., and Kopylov, V.I.: Fatigue life of fine-grain Al–Mg–Sc alloys produced by equal-channel angular pressing. Mater. Sci. Eng., A 349(1–2), 318 (2003).Google Scholar
Murashkin, M., Sabirov, I., Prosvirnin, D., Ovid’ko, I.A., Terentiev, V., Valiev, R.Z., and Dobatkin, S.V.: Fatigue behavior of an ultrafine-grained Al–Mg–Si alloy processed by high-pressure torsion. Metals 5(2), 578 (2015).Google Scholar
Chen, L.J., Ma, C.Y., Stoica, G.M., Liaw, P.K., Xu, C., and Langdon, T.G.: Mechanical behavior of a 6061 Al alloy and an Al2O3/6061 Al composite after equal-channel angular processing. Mater. Sci. Eng., A 410–411, 472 (2005).Google Scholar
Vinogradov, A., Ishida, T., Kitagawa, K., and Kopylov, V.I.: Effect of strain path on structure and mechanical behavior of ultrafine grain Cu–Cr alloy produced by equal-channel angular pressing. Acta Mater. 53(8), 2181 (2005).Google Scholar
Vinogradov, A., Patlan, V., Suzuki, Y., Kitagawa, K., and Kopylov, V.I.: Structure and properties of ultra-fine grain Cu–Cr–Zr alloy produced by equal-channel angular pressing. Acta Mater. 50(7), 1639 (2002).Google Scholar
Xu, C.Z., Wang, Q.J., Zheng, M.S., Zhu, J.W., Li, J.D., Huang, M.Q., Jia, Q.M., and Du, Z.Z.: Microstructure and properties of ultra-fine grain Cu–Cr alloy prepared by equal-channel angular pressing. Mater. Sci. Eng., A 459(1–2), 303 (2007).Google Scholar
Vinogradov, A., Stolyarov, V.V., Hashimoto, S., and Valiev, R.Z.: Cyclic behavior of ultrafine-grain titanium produced by severe plastic deformation. Mater. Sci. Eng., A 318(1–2), 163 (2001).Google Scholar
Semenova, I., Valiev, R., Yakushina, E., Salimgareeva, G., and Lowe, T.: Strength and fatigue properties enhancement in ultrafine-grained Ti produced by severe plastic deformation. J. Mater. Sci. 43(23), 7354 (2008).Google Scholar
Zherebtsov, S., Salishchev, G., Galeyev, R., and Maekawa, K.: Mechanical properties of Ti–6Al–4V titanium alloy with submicrocrystalline structure produced by severe plastic deformation. Mater. Trans. 46(9), 2020 (2005).Google Scholar
Niendorf, T., Canadinc, D., Maier, H.J., Karaman, I., and Sutter, S.G.: On the fatigue behavior of ultrafine-grained interstitial-free steel. Int. J. Mater. Res. 97(10), 1328 (2006).Google Scholar
Ueno, H., Kakihata, K., Kaneko, Y., Hashimoto, S., and Vinogradov, A.: Enhanced fatigue properties of nanostructured austenitic SUS 316L stainless steel. Acta Mater. 59(18), 7060 (2011).Google Scholar
Rhee, K., Lapovok, R., and Thomson, P.F.: The influence of severe plastic deformation on the mechanical properties of AA6111. J. Met. 57(5), 62 (2005).Google Scholar
Lapovok, R., Loader, C., Dalla Torre, F.H., and Semiatin, S.L.: Microstructure evolution and fatigue behavior of 2124 aluminum processed by ECAE with back pressure. Mater. Sci. Eng., A 425(1–2), 36 (2006).Google Scholar
Roven, H.J., Nesboe, H., Werenskiold, J.C., and Seibert, T.: Mechanical properties of aluminium alloys processed by SPD: Comparison of different alloy systems and possible product areas. Mater. Sci. Eng., A 410, 426 (2005).CrossRefGoogle Scholar
Patlan, V., Vinogradov, A., Higashi, K., and Kitagawa, K.: Overview of fatigue properties of fine grain 5056 Al–Mg alloy processed by equal-channel angular pressing. Mater. Sci. Eng., A 300(1–2), 171 (2001).Google Scholar
Saitova, L., Semenova, I., Hoppel, H.W., Valiev, R., and Goken, M.: Enhanced superplastic deformation behavior of ultrafine-grained Ti–6Al–4V alloy. Materialwiss. Werkstofftech. 39(4–5), 367 (2008).Google Scholar
Niendorf, T., Canadinc, D., Maier, H.J. and Karaman, I.: The role of grain size and distribution on the cyclic stability of titanium Scripta Materialia. 60(5), 344 (2009).Google Scholar
Mouritz, A.P.: Introduction to Aerospace Materials (Woodhead Publishing, Cambridge, U.K., 2012).Google Scholar
Joost, W.J. and Krajewski, P.E.: Towards magnesium alloys for high-volume automotive applications. Scr. Mater. 128, 107 (2017).Google Scholar
Kainer, K.U.: Magnesium Alloys and Their Applications (Wiley-VCH, Weinheim, Germany, 2000).Google Scholar
Mordike, B.L. and Ebert, T.: Magnesium—Properties-applications-potential. Mater. Sci. Eng., A 302(1), 37 (2001).Google Scholar
Hirsch, J. and Al-Samman, T.: Superior light metals by texture engineering: Optimized aluminum and magnesium alloys for automotive applications. Acta Mater. 61(3), 818 (2013).Google Scholar
Yoo, M.: Slip, twinning, and fracture in hexagonal close-packed metals. Metall. Mater. Trans. A 12(3), 409 (1981).Google Scholar
Lou, X.Y., Li, M., Boger, R.K., Agnew, S.R., and Wagoner, R.H.: Hardening evolution of AZ31B Mg sheet. Int. J. Plast. 23(1), 44 (2007).CrossRefGoogle Scholar
Taylor, G.I.: Plastic strain in metals. J. Inst. Met. LXII, 307 (1938).Google Scholar
Christian, J.W. and Mahajan, S.: Deformation twinning. Prog. Mater. Sci. 39(1–2), 1 (1995).Google Scholar
Potzies, C. and Kainer, K.U.: Fatigue of magnesium alloys. Adv. Eng. Mater. 6(5), 281 (2004).Google Scholar
Xiong, Y. and Jiang, Y.: Fatigue of ZK60 magnesium alloy under uniaxial loading. Int. J. Fatigue 64, 74 (2014).CrossRefGoogle Scholar
Dallmeier, J., Huber, O., Saage, H., and Eigenfeld, K.: Uniaxial cyclic deformation and fatigue behavior of AM50 magnesium alloy sheet metals under symmetric and asymmetric loadings. Mater. Des. 70, 10 (2015).Google Scholar
Matsuzuki, M. and Horibe, S.: Analysis of fatigue damage process in magnesium alloy AZ31. Mater. Sci. Eng., A 504(1–2), 169 (2009).Google Scholar
Hasegawa, S., Tsuchida, Y., Yano, H., and Matsui, M.: Evaluation of low cycle fatigue life in AZ31 magnesium alloy. Int. J. Fatigue 29(9–11), 1839 (2007).CrossRefGoogle Scholar
Begum, S., Chen, D.L., Xu, S., and Luo, A.A.: Low cycle fatigue properties of an extruded AZ31 magnesium alloy. Int. J. Fatigue 31(4), 726 (2009).CrossRefGoogle Scholar
Chen, C., Liu, T., Lv, C., Lu, L., and Luo, D.: Study on cyclic deformation behavior of extruded Mg–3Al–1Zn alloy. Mater. Sci. Eng., A 539(0), 223 (2012).CrossRefGoogle Scholar
Lin, X.Z. and Chen, D.L.: Strain controlled cyclic deformation behavior of an extruded magnesium alloy. Mater. Sci. Eng., A 496(1–2), 106 (2008).Google Scholar
Valiev, R.Z., Estrin, Y., Horita, Z., Langdon, T.G., Zehetbauer, M.J., and Zhu, Y.T.: Producing bulk ultrafine-grained materials by severe plastic deformation. J. Met. 58(4), 33 (2006).Google Scholar
Estrin, Y. and Vinogradov, A.: Fatigue behaviour of light alloys with ultrafine grain structure produced by severe plastic deformation: An overview. Int. J. Fatigue 32(6), 898 (2010).Google Scholar
Koike, J.: Enhanced deformation mechanisms by anisotropic plasticity in polycrystalline Mg alloys at room temperature. Metall. Mater. Trans. A 36(7), 1689 (2005).Google Scholar
Barnett, M.R., Keshavarz, Z., Beer, A.G., and Atwell, D.: Influence of grain size on the compressive deformation of wrought Mg–3Al–1Zn. Acta Mater. 52(17), 5093 (2004).Google Scholar
Koike, J., Kobayashi, T., Mukai, T., Watanabe, H., Suzuki, M., Maruyama, K., and Higashi, K.: The activity of non-basal slip systems and dynamic recovery at room temperature in fine-grained AZ31B magnesium alloys. Acta Mater. 51(7), 2055 (2003).Google Scholar
Figueiredo, R.B., Poggiali, F.S.J., Silva, C.L.P., Cetlin, P.R., and Langdon, T.G.: The influence of grain size and strain rate on the mechanical behavior of pure magnesium. J. Mater. Sci. 51(6), 3013 (2016).Google Scholar
Zúberová, Z., Kunz, L., Lamark, T.T., Estrin, Y., and Janeček, M.: Fatigue and tensile behavior of cast, hot-rolled, and severely plastically deformed AZ31 magnesium alloy. Metall. Mater. Trans. A 38(9), 1934 (2007).Google Scholar
Lapovok, R., Thomson, P.F., Cottam, R., and Estrin, Y.: The effect of warm equal channel angular extrusion on ductility and twinning in magnesium alloy ZK60. Mater. Trans. 45(7), 2192 (2004).Google Scholar
Wu, L., Stoica, G.M., Liao, H.H., Agnew, S.R., Payzant, E.A., Wang, G.Y., Fielden, D.E., Chen, L., and Liaw, P.K.: Fatigue-property enhancement of magnesium alloy, AZ31B, through equal-channel-angular pressing. In Annual Meeting of the Minerals, Metals and Materials Society (Minerals Metals Materials Society, Warrendale, USA, 2007); p. 2283.Google Scholar
Figueiredo, R.B. and Langdon, T.G.: Record superplastic ductility in a magnesium alloy processed by equal-channel angular pressing. Adv. Eng. Mater. 10(1–2), 37 (2008).Google Scholar
Figueiredo, R.B., Cetlin, P.R., and Langdon, T.G.: The processing of difficult-to-work alloys by ECAP with an emphasis on magnesium alloys. Acta Mater. 55(14), 4769 (2007).Google Scholar
Yamashita, A., Horita, Z., and Langdon, T.G.: Improving the mechanical properties of magnesium and a magnesium alloy through severe plastic deformation. Mater. Sci. Eng., A 300(1–2), 142 (2001).CrossRefGoogle Scholar
Mukai, T., Yamanoi, M., Watanabe, H., and Higashi, K.: Ductility enhancement in AZ31 magnesium alloy by controlling its grain structure. Scr. Mater. 45(1), 89 (2001).Google Scholar
Orlov, D., Raab, G., Lamark, T.T., Popov, M., and Estrin, Y.: Improvement of mechanical properties of magnesium alloy ZK60 by integrated extrusion and equal channel angular pressing. Acta Mater. 59(1), 375 (2011).Google Scholar
Orlov, D., Ralston, K.D., Birbilis, N., and Estrin, Y.: Enhanced corrosion resistance of Mg alloy ZK60 after processing by integrated extrusion and equal channel angular pressing. Acta Mater. 59(15), 6176 (2011).Google Scholar
Vinogradov, A., Orlov, D., and Estrin, Y.: Improvement of fatigue strength of a Mg–Zn–Zr alloy by integrated extrusion and equal-channel angular pressing. Scr. Mater. 67(2), 209 (2012).Google Scholar
Zheng, R., Bhattacharjee, T., Shibata, A., Sasaki, T., Hono, K., Joshi, M., and Tsuji, N.: Simultaneously enhanced strength and ductility of Mg–Zn–Zr–Ca alloy with fully recrystallized ultrafine grained structures. Scr. Mater. 131, 1 (2017).Google Scholar
Torbati-Sarraf, S.A., Sabbaghianrad, S., Figueiredo, R.B., and Langdon, T.G.: Orientation imaging microscopy and microhardness in a ZK60 magnesium alloy processed by high-pressure torsion. J. Alloys Compd. 712, 185 (2017).Google Scholar
Agnew, S.R., Mehrotra, P., Lillo, T.M., Stoica, G.M., and Liaw, P.K.: Texture evolution of five wrought magnesium alloys during route A equal channel angular extrusion: Experiments and simulations. Acta Mater. 53(11), 3135 (2005).Google Scholar
Agnew, S.R., Horton, J.A., Lillo, T.M., and Brown, D.W.: Enhanced ductility in strongly textured magnesium produced by equal channel angular processing. Scr. Mater. 50(3), 377 (2004).Google Scholar
Asqardoust, S., Zarei Hanzaki, A., Abedi, H.R., Krajnak, T., and Minárik, P.: Enhancing the strength and ductility in accumulative back extruded WE43 magnesium alloy through achieving bimodal grain size distribution and texture weakening. Mater. Sci. Eng., A 698, 218 (2017).Google Scholar
Fatemi, S.M., Zarei-Hanzaki, A., and Cabrera, J.M.: Microstructure, texture, and tensile properties of ultrafine/nano-grained magnesium alloy processed by accumulative back extrusion. Metall. Mater. Trans. A 48(5), 2563 (2017).Google Scholar
Estrin, Y. and Vinogradov, A.: Extreme grain refinement by severe plastic deformation: A wealth of challenging science. Acta Mater. 61(3), 782 (2013).Google Scholar
Yurchenko, N.Y., Stepanov, N.D., Salishchev, G.A., Rokhlin, L.L., and Dobatkin, S.V.: Effect of multiaxial forging on microstructure and mechanical properties of Mg–0.8Ca alloy. IOP Conf. Ser.: Mater. Sci. Eng. 63(1), 012075 (2014).Google Scholar
Nugmanov, D.R., Sitdikov, O.S., and Markushev, M.V.: Microstructure evolution in MA14 magnesium alloy under multi-step isothermal forging. J. Mater. Sci. Lett. 1, 213 (2011).Google Scholar
Miura, H., Yang, X., and Sakai, T.: Ultrafine grain evolution in Mg alloys, AZ31, AZ61, AZ91 by multi directional forging. Rev. Adv. Mater. Sci. 33(1), 92 (2013).Google Scholar
Miura, H., Yang, X., and Sakai, T.: Evolution of ultra-fine grains in AZ31 and AZ61 Mg alloys during multi directional forging and their properties. Mater. Trans. 49(5), 1015 (2008).Google Scholar
Kainer, K.U.: Magnesium Alloys and Technology (DGM: Wiley-VCH, Weinheim, Germany, 2003).Google Scholar
Shahzad, M. and Wagner, L.: Thermo-mechanical methods for improving fatigue performance of wrought magnesium alloys. Fatigue Fract. Eng. Mater. Struct. 33(4), 221 (2010).CrossRefGoogle Scholar
Müller, J., Janeček, M., Yi, S., Čížek, J., and Wagner, L.: Effect of equal channel angular pressing on microstructure, texture, and high-cycle fatigue performance of wrought magnesium alloys. Int. J. Mater. Res. 100(6), 838 (2009).Google Scholar
Shahzad, M., Eliezer, D., Gan, W.M., Yi, S.B., and Wagner, L.: Influence of extrusion temperature on microstructure, texture and fatigue performance of AZ80 and ZK60 magnesium alloys. Mater. Sci. Forum 561–565, 187 (2007).Google Scholar
Liu, W., Dong, J., Zhang, P., Yao, Z., Zhai, C., and Ding, W.: High cycle fatigue behavior of as-extruded ZK60 magnesium alloy. J. Mater. Sci. 44(11), 2916 (2009).Google Scholar
Miura, H., Yu, G., and Yang, X.: Multi-directional forging of AZ61Mg alloy under decreasing temperature conditions and improvement of its mechanical properties. Mater. Sci. Eng., A 528(22–23), 6981 (2011).Google Scholar
Wang, C.Y., Wang, X.J., Chang, H., Wu, K., and Zheng, M.Y.: Processing maps for hot working of ZK60 magnesium alloy. Mater. Sci. Eng., A 464(1–2), 52 (2007).Google Scholar
Homma, T., Kunito, N., and Kamado, S.: Fabrication of extraordinary high-strength magnesium alloy by hot extrusion. Scr. Mater. 61(6), 644 (2009).Google Scholar
Kamado, S. and Kojima, Y.: Development of magnesium alloys with high performance. Mater. Sci. Forum 546–549, 55 (2007).Google Scholar
Al-Samman, T. and Gottstein, G.: Dynamic recrystallization during high temperature deformation of magnesium. Mater. Sci. Eng., A 490(1–2), 411 (2008).Google Scholar
Shimizu, I.: A stochastic model of grain size distribution during dynamic recrystallization. Philos. Mag. A 79(5), 1217 (1999).Google Scholar
Bergmann, R.B. and Bill, A.: On the origin of logarithmic-normal distributions: An analytical derivation, and its application to nucleation and growth processes. J. Cryst. Growth 310(13), 3135 (2008).Google Scholar
Figueiredo, R.B. and Langdon, T.G.: Principles of grain refinement and superplastic flow in magnesium alloys processed by ECAP. Mater. Sci. Eng., A 501(1–2), 105 (2009).Google Scholar
Mughrabi, H. and Höppel, H.W.: Cyclic deformation and fatigue properties of very fine-grained metals and alloys. Int. J. Fatigue 32(9), 1413 (2010).Google Scholar
Höppel, H.W., Korn, M., Lapovok, R., and Mughrabi, H.: Bimodal grain size distributions in UFG materials produced by SPD: Their evolution and effect on mechanical properties. J. Phys.: Conf. Ser. 240(1), 012147 (2010).Google Scholar
Lapovok, R., Estrin, Y., Popov, M.V., and Langdon, T.G.: Enhanced superplasticity in a magnesium alloy processed by equal-channel angular pressing with a back-pressure. Adv. Eng. Mater. 10(5), 429 (2008).Google Scholar
Lapovok, R., Cottam, R., Thomson, P., and Estrin, Y.: Extraordinary superplastic ductility of magnesium alloy ZK60. J. Mater. Res. 20(6), 1375 (2005).Google Scholar
Jain, A., Duygulu, O., Brown, D.W., Tomé, C.N., and Agnew, S.R.: Grain size effects on the tensile properties and deformation mechanisms of a magnesium alloy AZ31B sheet. Mater. Sci. Eng., A 486(1–2), 545 (2008).Google Scholar
Razavi, S.M., Foley, D.C., Karaman, I., Hartwig, K.T., Duygulu, O., Kecskes, L.J., Mathaudhu, S.N., and Hammond, V.H.: Effect of grain size on prismatic slip in Mg–3Al–1Zn alloy. Scr. Mater. 67(5), 439 (2012).CrossRefGoogle Scholar
Ding, S.X., Chang, C.P., and Kao, P.W.: Effects of processing parameters on the grain refinement of magnesium alloy by equal-channel angular extrusion. Metall. Mater. Trans. A 40A(2), 415 (2009).Google Scholar
Agnew, S.R., Stoica, G.M., Chen, L.J., Lillo, T.M., Macheret, J., and Liaw, P.K.: Equal channel angular processing of magnesium alloys. In TMS Annual Meeting (The Minerals, Metals and Materials Society, Warrendale, Pennsylvania, 2002); p. 643.Google Scholar
Ma, C., Liu, M., Wu, G., Ding, W., and Zhu, Y.: Tensile properties of extruded ZK60–RE alloys. Mater. Sci. Eng., A 349(1–2), 207 (2003).Google Scholar
Pekguleryuz, M.O.: 1-Current developments in wrought magnesium alloys. In Advances in Wrought Magnesium Alloys, Bettles, C. and Barnett, M., eds. (Woodhead Publishing, Cambridge, U.K., 2012); p. 3.Google Scholar
Nugmanov, D.R., Sitdikov, O.S., and Markushev, M.V.: Texture and anisotropy of yield strength in multistep isothermally forged Mg–5.8Zn–0.65Zr alloy. IOP Conf. Ser.: Mater. Sci. Eng. 82(1), 012099 (2015).Google Scholar
Nugmanov, D.R., Sitdikov, O.S., and Markushev, M.V.: About fine-grain structure forming in bulk magnesium alloy MA14 under multidirectional isothermal forging. Bas. Probl. Mater. Sci. 9(2), 230 (2012).Google Scholar
Nugmanov, D.R., Sitdikov, O.S., and Markushev, M.V.: Structure of magnesium alloy MA14 after multistep isothermal forging and subsequent isothermal rolling. Phys. Met. Metallogr. 116(10), 993 (2015).Google Scholar
He, Y., Pan, Q., Qin, Y., Liu, X., and Li, W.: Microstructure and mechanical properties of ultrafine grain ZK60 alloy processed by equal channel angular pressing. J. Mater. Sci. 45(6), 1655 (2010).Google Scholar
Yang, X.Y., Sun, Z.Y., Xing, J., Miura, H., and Sakai, T.: Grain size and texture changes of magnesium alloy AZ31 during multi-directional forging. Trans. Nonferrous Met. Soc. China 18, S200 (2008).Google Scholar
Suresh, S.: Fatigue of Materials (Cambridge University Press, Cambridge, U.K., 1991).Google Scholar
Höppel, H.W., Mughrabi, H., and Vinogradov, A.: Fatigue Properties of Bulk Nanostructured Materials (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2009).Google Scholar
Kulyasova, O.B., Islamgaliev, R.K., Zhao, Y., and Valiev, R.Z.: Enhancement of the mechanical properties of an Mg–Zn–Ca alloy using high-pressure torsion. Adv. Eng. Mater. 17(12), 1738 (2015).Google Scholar
Kunz, L. and Fintová, S.: Fatigue behaviour of AZ91 magnesium alloy in as-cast and severe plastic deformed conditions. Adv. Mater. Res. 891–892, 397 (2014).Google Scholar
Manson, S.S. and Halford, G.R.: Fatigue and Durability of Structural Materials (ASM International Novelty, OH, USA, 2006).Google Scholar
Duggan, T.V. and Byrne, J.: Fatigue as a Design Criterion (Macmillan Press Ltd., London, 1977).Google Scholar
Esin, A.: A method for correlating different types of fatigue curve. Int. J. Fatigue 2(4), 153 (1980).Google Scholar
Lukas, P. and Kunz, L.: Effect of grain-size on the high cycle fatigue behavior of polycrystalline copper. Mater. Sci. Eng. 85(1–2), 67 (1987).Google Scholar
Vinogradov, A.: Fatigue limit and crack growth in ultra-fine grain metals produced by severe plastic deformation. J. Mater. Sci. 42(5), 1797 (2007).Google Scholar
Klemm, R.: Zyklische Plastizität von Mikro- und Submikrokristallinem Nickel (Technische Universität Dresden, Dresden, Germany, 2004).Google Scholar
Vasilev, E., Linderov, M., Nugmanov, D., Sitdikov, O., Markushev, M., and Vinogradov, A.: Fatigue performance of Mg–Zn–Zr alloy processed by hot severe plastic deformation. Metals 5(4), 2316 (2015).Google Scholar
Nový, F., Janeček, M., Škorík, V., Müller, J., and Wagner, L.: Very high cycle fatigue behaviour of as-extruded AZ31, AZ80, and ZK60 magnesium alloys. Int. J. Mater. Res. 100(3), 288 (2009).Google Scholar
Fouad, Y., Mhaede, M., and Wagner, L.: Effects of mechanical surface treatments on fatigue performance of extruded ZK60 alloy. Fatigue Fract. Eng. Mater. Struct. 34(6), 403 (2011).Google Scholar