Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-29T12:26:28.863Z Has data issue: false hasContentIssue false

Electron mobility in n-type Hg1−xCdxTe and Hg1−xZnx Te alloys

Published online by Cambridge University Press:  31 January 2011

J.D. Patterson
Affiliation:
Department of Physics and Space Sciences, Florida Institute of Technology, Melbourne, Florida 32901-6988
Wafaa A. Gobba
Affiliation:
Department of Physics and Space Sciences, Florida Institute of Technology, Melbourne, Florida 32901-6988
S.L. Lehoczky
Affiliation:
ES75, Space Science Laboratory, Marshall Space Flight Center, Alabama 35812
Get access

Abstract

We have calculated the mobility of electrons in n-type Mercury Cadmium Telluride (MCT) and compared it to a calculation of the mobility of electrons in n-type Mercury Zinc Telluride (MZT) with nearly the same energy gap and with the same number of donors and acceptors. We also compared the results of the MZT calculation with experiment. We found for equivalent energy gaps that the mobilities in the two compounds (MCT, MZT) were nearly the same. The calculations for both MCT and MZT were based on the best set of material parameters that we could compile from the literature. Using these parameters, the comparison with experiment for MZT yielded good results. Since MZT is harder and structurally more stable with respect to Hg retention than MCT, the possibility of equivalent mobility for MCT and MZT is significant. This calculation is one of the first extensive calculations of the mobility of MZT, and we compared it with another which appeared to be less extensive. Our calculation involves scattering of the electrons by longitudinal optic phonons, acoustic phonons, ionized impurities, holes, and compositional disorder. Since not all of these interactions can be approximated by elastic scattering, the corresponding Boltzmann equation was solved by a variational principle. We also discuss directions for future work.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Narrow Gap Semiconductors and Related Materials, edited by Seiler, David G. and Littler, C. L. (Adam Hilger, New York, 1990), 345 pages.Google ScholarPubMed
2.Reynolds, R. A., J. Vac. Sci. Technol. A7, 269270 (1989).CrossRefGoogle Scholar
3.Lehoczky, S. L., Summers, C. J., Szofran, F. R., and Martin, B. O., in Materials Processing in the Reduced Gravity Environment of Space, edited by Rindone, Guy E. (Elsevier, Amsterdam, 1982), pp. 421431.Google Scholar
4.Lehoczky, S. L., Szofran, F. R., and Martin, B. G., NASA CR-161598, “Advanced Methods for Preparation and Characterization of Infrared Detector Materials, Part I”, July 5, 1980.Google Scholar
5.Meyer, J. R. and Bartoli, F. J., J. Vac. Sci. Technol. 21, 237240 (1982).CrossRefGoogle Scholar
6.Dubowski, J. J., Dietl, T., Szymanska, W., and Galazka, R. R., J. Phys. Chem. Solids 42, 351362 (1981).CrossRefGoogle Scholar
7.Granger, R., Lasbley, A., Roland, S., Pelletier, C. M., and Triboulet, R., J. Cryst. Growth 86, 682688 (1988).CrossRefGoogle Scholar
8.Roland, S., Lasbley, A., Seyni, A., Granger, R., and Triboulet, R., Rev. Phys. Appl. 24, 795802 (1989).CrossRefGoogle Scholar
9.Abdelhakiem, Wafaa, Patterson, J. D., and Lehoczky, S. L., Mater. Lett. 11 (12), 4751 (1991).CrossRefGoogle Scholar
10.Zawadzki, W., Adv. Phys. 23, 435522 (1974).CrossRefGoogle Scholar
11.Zawadzki, W., Handbook on Semiconductors, edited by Moss, T. S., Vol 1, edited by Paul, W. (North-Holland Publ. Co., 1982), pp. 713803.Google Scholar
12.Patterson, James D., “Electron Mobility in Mercury Cadmium Telluride,” NASA, CR-183553, XXII, 1988, Marshall Space Flight Center.Google Scholar
13.Patterson, J. D., “Improving the Methods for Calculating Electronic Properties of Narrow Bandgap Semiconductors,” NASA CR-179219, XXVII, 1987, Marshall Space Flight Center.Google Scholar
14.Kane, Evan O., J. Phys. Chem. Solids 1, 249261 (1957).CrossRefGoogle Scholar
15.Patterson, J. D. and Lehoczky, S. L., Phys. Lett. 137A, 137138 (1989).CrossRefGoogle Scholar
16.Kossut, J., Phys. Status Solidi (b) 86, 593601 (1978).CrossRefGoogle Scholar
17.Kim, R. S. and Narita, S. I., J. Phys. Soc. Jpn. 31, 613614 (1971).CrossRefGoogle Scholar
18.Berding, M. A., van Schilgaarde, M., Paxton, A. T., and Sher, A., J. Vac. Sci. Technol. A8, 11031107 (1990).CrossRefGoogle Scholar
19.Littler, C. L., Seiler, D. G., and Loloee, M. R., J. Vac. Sci. Technol. A8, 11331138 (1990).CrossRefGoogle Scholar
20.Makowski, L. and Glicksman, M., J. Phys. Chem. Solids 34, 487 (1973).CrossRefGoogle Scholar
21.Gobba, Wafaa M. K. Abdelhakiem, “Theory of electron mobility in narrow-gap semiconductors”, Ph.D. Thesis, Florida Institute of Technology, 1991.Google Scholar
22.Berding, M. A., Krishnamurthy, S., Sher, A., and Chen, A. B., J. Vac. Sci. Technol. A5, 30143018 (1987).CrossRefGoogle Scholar
23.Rogalski, A., Rutkowski, J., Jozwikowski, K., Piotrowski, J., and Novak, Z., Appl. Phys. A50, 379384 (1990).CrossRefGoogle Scholar
24.Piotrowski, J., Adamiec, K., and Maciak, A., Infrared Phys. 29, 267270 (1989).CrossRefGoogle Scholar
25.Sher, Ariel, Weiss, Eliezer, and Mainzer, Nilly, J. Vac. Sci. Technol. A8, 10931097 (1990).CrossRefGoogle Scholar
26.Lehoczky, S. L. and Szofran, F. R., in Materials Processing in the Reduced Gravity Environment of Space, edited by Rindone, Guy E. (Elsevier, Amsterdam, 1982), pp. 409420.Google Scholar
27.Lehoczky, S. L. and Szofran, F. R., NASA CR-161949, “Advanced Method for Preparation and Characterization of Infrared Detector Materials, Part II,” September 30, 1981.Google Scholar
28.Nelson, D. A., J. G. Broerman, Summers, C. J., and Whitset, C. R., Phys. Rev. B 18 (4), 16581672 (1978).CrossRefGoogle Scholar
29.Lehoczky, S. L., Broerman, J. G., Donald Nelson, A., and Whitset, Charles R., Phys. Rev. B 9, 15981620 (1974).CrossRefGoogle Scholar
30.Higgins, W. M., Pultz, G. N., Roy, R. G., and Lancaster, R. A., J. Vac. Sci. Technol. A 7, 271275 (1989).CrossRefGoogle Scholar
31.Jozwikowski, K., and Rogalski, A., Infrared Phys. 28, 101107 (1988).CrossRefGoogle Scholar
32.Hansen, G. L., Schmit, J. L., and Casselman, T. N. (1982), J. Appl. Phys. 53, 70997101 (1983). Also see G. L. Hansen and J. L. Schmit, J. Appl. Phys. 54, 1639–1640 (1983).CrossRefGoogle Scholar
33. EMIS Datareviews Series No. 3, INSPEC, edited by Brice, John and Capper, Peter (The Institute of Electrical Engineers, New York, 1987), p. 107.Google Scholar
34.Weileer, M. H., Aggarwal, R. L., and Lax, B., Phys. Rev. B. 16, 3603 (1977).CrossRefGoogle Scholar
35.Galaska, R. R. and Zakrzewski, T., Phys. Status Solidi (a) 23, 39 (1967).Google Scholar
36.Kim, R. S. and Narita, S., Phys. Status Solidi (b) 73, 741 (1976).CrossRefGoogle Scholar
37.Guldner, Y., Rigaux, C., Mycielski, A., and Counder, Y., Phys. Status Solidi (b) 82, 149 (1977).CrossRefGoogle Scholar
38.Guldner, Y., Rigaux, C., Mycielski, A., and Counder, Y., Phys. Status Solidi (b) 81, 615 (1977).CrossRefGoogle Scholar
39.Dornhaus, R. and Nimtz, G., Tracts in Modern Phys. 78, 1 (1976).Google Scholar
40.Weiler, M. H., in Semiconductors and Semimetals, edited by Willardson, R. K. and Beer, A. C. (Academic Press, New York, 1981), Vol. 16, Chap. 3.Google Scholar
41.Scott, Walter, J. Appl. Phys. 43, 10551062 (1972).CrossRefGoogle Scholar
42.Montgomery, D. S., J. Phys. C: Solid State Phys. 16, 29232934 (1983).CrossRefGoogle Scholar
43.Spicer, W. E., Silberman, J. A., Morgen, J., Lindau, I., Wilson, J. A., Chen, A. B., and Sher, A., Phys. Rev. Lett. 49 (11), 948951 (1982).CrossRefGoogle Scholar
44.Kohler, M., Z. Phys. 125, 679 (1949).CrossRefGoogle Scholar
45.Howarth, D. J. and Sondheimer, E. M., Proc. Roy. Soc. A219, 53 (1953).Google Scholar
46.Ehrenreich, H., J. Phys. Chem. Solids 2, 131 (1975).CrossRefGoogle Scholar
47.Long, Donald and Schmit, Joseph L., Semiconductors and Semimetals, edited by Willardson, R. K. and Beer, Albert C. (Academic Press, New York, 1970), Vol. 5, Chap. 5.Google Scholar
48.Tsidilkovski, I. M., Harus, G. I., and Shelushinina, N. G., Adv. Phys. 34 (1), 43174 (1985).CrossRefGoogle Scholar