Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-29T04:26:25.673Z Has data issue: false hasContentIssue false

Texture Evolution in Si/SiC Layered Structures Deposited on Si(001) by Chemical Vapor Deposition

Published online by Cambridge University Press:  31 January 2011

L-O. Björketun
Affiliation:
Thin Film Physics Division, Department of Physics and Measurement Technology, Linköoping University, S-581 83 Linköping, Sweden
L. Hultman
Affiliation:
Thin Film Physics Division, Department of Physics and Measurement Technology, Linköoping University, S-581 83 Linköping, Sweden
O. Kordina
Affiliation:
Thin Film Physics Division, Department of Physics and Measurement Technology, Linköoping University, S-581 83 Linköping, Sweden
J-E. Sundgren
Affiliation:
Thin Film Physics Division, Department of Physics and Measurement Technology, Linköoping University, S-581 83 Linköping, Sweden
Get access

Abstract

Texture evolution in Si/SiC multilayers deposited by atmospheric pressure chemical vapor deposition on carbonized Si(001) substrates was investigated using x-ray diffraction and transmission electron microscopy. SiC layers were epitaxial and (001)-oriented. Si layers deposited on the SiC exhibited a columnar structure with predominantly (110) orientation which could be related to the nucleation. Orientational relationships were Si[111] ║ SiC[110] and Si[112] ║ SiC[110]. Also, a low density of (112)-oriented columns was present. Extensive twinning on the vertical {111} planes within the Si columns led to domains of hexagonal stacking up to 10 nm in size with the presence of 2H-Si and 4H-Si. Subsequent SiC layer growth on the (110)-oriented Si layer resulted in a (110)-oriented SiC layer if the Si layer was carbonized prior to growth.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Wahab, Q., Hultman, L., Ivanov, I. P., Willander, M., and Sundgren, J. E., J. Mater. Res. 10, 1349 (1995).CrossRefGoogle Scholar
2.Wahab, Q., Karlsteen, M., Nur, O., Hultman, L., Willander, M., and Sundgren, J-E., J. Electron. Mater. 25, 1495 (1996).CrossRefGoogle Scholar
3.Dmitriev, V. A., Irvine, K., and Spencer, M., Appl. Phys. Lett. 64, 318 (1994).CrossRefGoogle Scholar
4.Kim, K., Choi, S-D., and Wang, K. L., Thin Solid Films 225, 235 (1993).CrossRefGoogle Scholar
5.Palmour, J. W., in European Patent Office, Publication number: 0 637 069 A1 (1995).Google Scholar
6.Cerva, H. and Oppolzer, H., Polycrystalline Semiconductors 35, 355 (1989).Google Scholar
7.Kakinuma, H., J. Vac. Sci. Technol. A 13, 2310 (1995).CrossRefGoogle Scholar
8.Hasegawa, S., Fujimoto, E., Inokuma, T., and Kurata, Y., J. Appl. Phys. 77, 357 (1995).CrossRefGoogle Scholar
9.Kung, K. T-Y. and Reif, R., J. Appl. Phys. 62, 1503 (1987).CrossRefGoogle Scholar
10.Garluccio, R., Stoemenos, J., Fortunato, G., Meakin, D. B., and Bianconi, M., Appl. Phys. Lett. 66, 1394 (1995).CrossRefGoogle Scholar
11.Hayashi, T. and Kurosawa, S., J. Cryst. Growth 45, 426 (1978).CrossRefGoogle Scholar
12.Abrahams, M. S., Buiocchi, C. J., Smith, R. T., Corboy, J. F., Blanc, J., and Cullen, G. W., J. Appl. Phys. 47, 5139 (1976).CrossRefGoogle Scholar
13.Kordina, O., Hallin, C., Glass, R. C., Henry, A., and Janzén, E., Proceedings of the Fifth Int. Conf. on Silicon Carbide and Related Materials (ICSCRM), Institute of Physics Conference Series (1993), Vol. 137, p. 41.Google Scholar
14.Kordina, O., Hallin, C., Glass, R. C., Henry, A., Singh, M., Björketun, L-O., and Janzén, E., unpublished.Google Scholar
15.Kordina, O., Björketun, L-O., Henry, A., Hallin, C., Glass, R. C., Hultman, L., Sundgren, J-E., and Janzén, E., J. Cryst. Growth 154, 303 (1995).CrossRefGoogle Scholar
16.Pirouz, P., Dahmen, U., Westmacott, K. H., and Chaim, R., Acta Metall. Mater. 38, 329 (1990).CrossRefGoogle Scholar
17.Cerva, H., J. Mater. Res. 6, 2324 (1991).CrossRefGoogle Scholar
18.Hendriks, M., Radelaar, S., Beers, A. M., and Bloem, J., Thin Solid Films 113, 59 (1984).CrossRefGoogle Scholar
19.Ramsdell, L. S., Am. Mineral 32, 64 (1947).Google Scholar
20.Batstone, J. L., Philos. Mag. A 67, 51 (1993).CrossRefGoogle Scholar
21.Cherns, D., Philos. Mag. 30, 549 (1974).CrossRefGoogle Scholar
22.Piette, S. A., Kiely, C. J., and Eden, J. G., in Polysilicon Films and Interfaces, edited by Wong, C. Y., Thompson, C. V., and Tu, K-N. (Mater. Res. Soc. Symp. Proc. 106, Pittsburgh, PA, 1988), p. 15.Google Scholar
23.Hassan, M-A. A., in Linköping Studies in Science and Technology, Dissertations No. 235 (Linköping University, 1990), p. 317.Google Scholar
24.Föll, H. and Carter, C. B., Philos. Mag. A 40, 497 (1979).CrossRefGoogle Scholar
25.Drosd, R. and Washburn, J., J. Appl. Phys. 53, 397 (1982).CrossRefGoogle Scholar
26.Csepregi, L., Kennedy, E. F., and Mayer, J. W., J. Appl. Phys. 49, 3906 (1978).CrossRefGoogle Scholar
27.Servidori, M., Cannavó, S., Ferla, G., Ferla, A. L., Campisano, S. U., and Rimini, E., Nucl. Instr. Methods in Phys. Res. B 19/20, 317 (1987).CrossRefGoogle Scholar
28.Tan, T., Föll, H., and Hu, S. M., Philos. Mag. A 44, 127 (1981).CrossRefGoogle Scholar
29.Pirouz, P., Chaim, R., and Dahmen, U., in Defects in Electronic Materials, edited by Stavola, M., Pearton, S. J., and Davies, G. (Mater. Res. Soc. Symp. Proc. 104, Pittsburgh, PA, 1988), p. 133.Google Scholar
30.Eremenko, V. G. and Nikitenko, V. I., Phys. Status Solidi A 14, 317 (1972).CrossRefGoogle Scholar
31.Dahmen, U., Westmacott, K. H., Pirouz, P., and Chaim, R., Acta Metall. Mater. 38, 323 (1990).CrossRefGoogle Scholar
32.Pirouz, P., Chaim, R., Dahmen, U., and Westmacott, K. H., Acta Metall. Mater. 38, 313 (1990).CrossRefGoogle Scholar
33.Hu, J. Z., Merkle, L. D., Menoni, C. S., and Spain, I. L., Phys. Rev. B 34, 4679 (1986).CrossRefGoogle Scholar
34.Yin, M. T. and Cohen, M. L., Phys. Rev. B 26, 5668 (1982).CrossRefGoogle Scholar