Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-01T03:46:12.295Z Has data issue: false hasContentIssue false

Accelerated microwave-assisted synthesis and in situ X-ray scattering of tungsten-substituted vanadium dioxide (V1−xWxO2)

Published online by Cambridge University Press:  23 September 2020

Catrina E. Wilson
Affiliation:
Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio43212, USA Center for Electron Microscopy and Analysis, The Ohio State University, Columbus, Ohio43212, USA
Amanda E. Gibson
Affiliation:
Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio43212, USA Center for Electron Microscopy and Analysis, The Ohio State University, Columbus, Ohio43212, USA
Joshua J. Argo
Affiliation:
Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio43212, USA Center for Electron Microscopy and Analysis, The Ohio State University, Columbus, Ohio43212, USA
Patricia A. Loughney
Affiliation:
Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio43212, USA Center for Electron Microscopy and Analysis, The Ohio State University, Columbus, Ohio43212, USA
Wenqian Xu
Affiliation:
X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois60439, USA
Graham King
Affiliation:
Brockhouse Beamlines, Canadian Light Source, Saskatoon, SaskatchewanS7N 2V3, Canada
Vicky Doan-Nguyen*
Affiliation:
Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio43212, USA Center for Electron Microscopy and Analysis, The Ohio State University, Columbus, Ohio43212, USA Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio43210, USA
*
a)Address all correspondence to this author. e-mail: doan-nguyen.1@osu.edu
Get access

Abstract

Vanadium dioxide (VO2) has been widely studied due to its metal-insulator phase transition at 68 °C, below which it is a semiconducting monoclinic phase, P21/c, and above it is a metallic tetragonal phase, P42/mnm. Substituting vanadium with transition metals allows transition temperature tunability. An accelerated microwave-assisted synthesis for VO2 and 5d tungsten-substituted VO2 presented herein decreased synthesis time by three orders of magnitude while maintaining phase purity, particle size, and transition character. Tungsten substitution amount was determined using inductively coupled plasma-optical emission spectroscopy. Differential scanning calorimetry, superconducting quantum interference device measurements, and in situ heating and cooling experiments monitored through synchrotron X-ray diffraction (XRD) confirmed the transition temperature decreased with increased tungsten substitution. Scanning electron microscopy analyzed through the line-intercept method produced an average particle size of 3–5 μm. Average structure and local structure phase purity was determined through the Rietveld analysis of synchrotron XRD and the least-squares refinement of pair distribution function data.

Type
Invited Feature Paper
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

b)

These authors contributed equally to this work.

References

Morin, F.J.: Oxides which show a metal-to-insulator transition at the neel temperature. Phys. Rev. Lett. 3, 34 (1959).CrossRefGoogle Scholar
Berglund, C.N. and Guggenheim, H.J.: Electronic properties of VO2 near the semiconductor-metal transition. Phys. Rev. 185, 1022 (1969).CrossRefGoogle Scholar
Goodenough, J.B.: The two components of the crystallographic transition in VO2. J. Solid State Chem. 3, 490 (1971).CrossRefGoogle Scholar
Adler, D.: Mechanisms for metal-nonmental transitions in transition-metal oxides and sulfides. Rev. Mod. Phys. 40, 714 (1968).CrossRefGoogle Scholar
Mott, N.F.: Metal-insulator transitions. Pure Appl. Chem. 52, 65 (1980).CrossRefGoogle Scholar
Mott, N.F.: Metal-Insulator Transitions, 2nd ed. (Taylor & Francis Ltd, London, 1997).Google Scholar
Eyert, V.: The metal-insulator transitions of VO2: A band theoretical approach. Ann. der Phys. 11, 650 (2002).3.0.CO;2-K>CrossRefGoogle Scholar
Wentzcovitch, R.M., Schulz, W.W., and Allen, P.B.: VO2: Peierls or Mott-Hubbard? A view from band theory. Phys. Rev. Lett. 72, 3389 (1994).CrossRefGoogle ScholarPubMed
Andersson, G.. Acta Chemica Scandinavica. 10, 623 (1956).CrossRefGoogle Scholar
Magnéli, A., Andersson, G., Sundkvist, G., and Sundkvist, G.. Acta Chemica Scandinavica 9, 1378 (1955).CrossRefGoogle Scholar
McWhan, D.B., Marezio, M., Remeika, J.P., and Dernier, P.D.: X-ray diffraction study of metallic VO2. Phys. Rev. B 10, 490 (1974).CrossRefGoogle Scholar
Corr, S.A., Shoemaker, D.P., Melot, B.C., and Seshadri, R.: Real-space investigation of structural changes at the metal-insulator transition in VO2. Phys. Rev. Lett. 105, 1 (2010).CrossRefGoogle ScholarPubMed
Paul, W.: The present position of theory and experiment for VO2. Mater. Res. Bull. 5, 691 (1970).CrossRefGoogle Scholar
Holman, K.L., McQueen, T.M., Williams, A.J., Klimczuk, T., Stephens, P.W., Zandbergen, H.W., Xu, Q., Ronning, F., and Cava, R.J.: Insulator to correlated metal transition in V1-xMoxO2. Phys. Rev. B—Condens. Matter Mater. Phys. 79, 1 (2009).CrossRefGoogle Scholar
Barker, A.S. Jr, Verleur, H.W., and Guggenheim, H.J.: Infrared optical properties of vanadium dioxide above and below the transition temperature. Phys. Rev. Lett. 36, 2137 (1976).Google Scholar
Lamsal, C. and Ravindra, N.M.: Optical properties of vanadium oxides—An analysis. J. Mater. Sci. 48, 6341 (2013).CrossRefGoogle Scholar
Qazilbash, M.M., Schafgans, A.A., Burch, K.S., Yun, S.J., Chae, B.G., Kim, B.J., Kim, H.T., and Basov, D.N.: Electrodynamics of the vanadium oxides VO2 and V2O3. Phys. Rev. B—Condens. Matter Mater. Phys. 77, 1 (2008).CrossRefGoogle Scholar
Kam, K.C. and Cheetham, A.K.: Thermochromic VO2 nanorods and other vanadium oxides nanostructures. Mater. Res. Bull. 41, 1015 (2006).CrossRefGoogle Scholar
Lv, W., Huang, D., Chen, Y., Qiu, Q., and Luo, Z.: Synthesis and characterization of Mo-W co-doped VO2(R) nano-powders by microwave-assissted hydrothermal method. Ceram. Int. 40, 12661 (2014).CrossRefGoogle Scholar
Tan, X., Liu, W., Long, R., Zhang, X., Yao, T., Liu, Q., Sun, Z., Cao, Y., and Wei, S.: Symmetry-controlled structural phase transition temperature in chromium-doped vanadium dioxide. J. Phys. Chem. C 120, 28163 (2016).CrossRefGoogle Scholar
Zylbersztejn, A. and Mott, N.F.: Metal-insulator transition in vanadium dioxide. Phys. Rev. B 11, 4383 (1975).CrossRefGoogle Scholar
Sommers, C., De Groot, R., Kaplan, D., and Zylbersztejn, A.: Cluster calculations of the electronic d-states in VO2. J. Phys. Lett. 36, 157 (1975).CrossRefGoogle Scholar
Goodenough, J.B.: Direct cation–cation interactions. Phys. Rev. 117, 1442 (1960).CrossRefGoogle Scholar
Hiroi, Z.: Structural instability of the rutile compounds and its relevance to the metal-insulator transition of VO2. Prog. Solid State Chem. 43, 47 (2015).CrossRefGoogle Scholar
Tan, X., Yao, T., Long, R., Sun, Z., Feng, Y., Cheng, H., Yuan, X., Zhang, W., Liu, Q., Wu, C., Xie, Y., and Wei, S.: Unraveling metal-insulator transition mechanism of VO2 triggered by tungsten doping. Sci. Rep. 2, 466 (2012).CrossRefGoogle Scholar
Whittaker, L., Wu, T.L., Patridge, C.J., Sambandamurthy, G., and Banerjee, S.: Distinctive finite size effects on the phase diagram and metal-insulator transitions of tungsten-doped vanadium(IV) oxide. J. Mater. Chem. 21, 5580 (2011).CrossRefGoogle Scholar
Israelsson, M. and Kihlborg, L.: The phase relations in the VO2-WO2 system. J. Chem. Inf. Model. 5, 19 (1970).Google Scholar
Shibuya, K., Kawasaki, M., and Tokura, Y.: Metal-insulator transition in epitaxial V1-xWxO2 (0 ≤ x ≤0.33) thin films. Appl. Phys. Lett. 96, 022102 (2010).CrossRefGoogle Scholar
Nygren, M. and Israelsson, M.: A D.T.A. study of the semiconductor-metallic transition temperature in V1-xWxO2, 0 ≤ x ≤ 0.067. Mater. Res. Bull. 4, 881 (1969).CrossRefGoogle Scholar
Lawton, S.A. and Theby, E.A.: Effect of tungsten and molybdenum doping on the semiconductor-metallic transition in vanadium dioxide produced by evaporative decomposition of solutions and hydrogen reduction. J. Am. Ceram. Soc. 78, 238 (1995).CrossRefGoogle Scholar
Pouget, J.P., Launois, H., D'Haenens, J.P., Merenda, P., and Rice, T.M.: Electron localization induced by uniaxial stress in pure VO2. J. Chem. Inf. Model. 53, 1689 (2012).Google Scholar
Chen, S., Zhang, X., Zhang, Q., and Tan, W.: Trioctylphosphine as both solvent and stabilizer to synthesize CdS nanorods. Nanoscale Res. Lett. 4, 1159 (2009).CrossRefGoogle ScholarPubMed
Kosuge, K.: The phase transition in VO2. J. Phys. Soc. Japan 22, 551 (1967).CrossRefGoogle Scholar
Villeneuve, G., Bordet, A., Casalot, A., Pouget, J.P., Launois, H., and Lederer, P.: Contribution to the study of the metal-insulator transition in the V1−xNbxO2 system: I—crystallographic and transport properties. J. Phys. Chem. Solids 33, 1953 (1972).CrossRefGoogle Scholar
Yang, Z., Ko, C., and Ramanathan, S.: Oxide electronics utilizing ultrafast metal-insulator transitions. Annu. Rev. Mater. Res. 41, 337 (2011).CrossRefGoogle Scholar
Nag, J. and Haglund, R.F.: Synthesis of vanadium dioxide thin films and nanoparticles. J. Phys. Condens. Matter 20, 264016 (2008).CrossRefGoogle Scholar
Muramoto, K., Takahashi, Y., Terakado, N., Yamazaki, Y., Suzuki, S., and Fujiwara, T.: VO2-dispersed glass: A new class of phase change material. Sci. Rep. 8, 1 (2018).CrossRefGoogle ScholarPubMed
Qazilbash, M.M., Brehm, M., Chae, B.-G., Ho, P.-C., Andreev, G.O., Kim, B.-J., Yun, S.J., Balatsky, A.V., Maple, M.B., Keilmann, F., Kim, H.-T., and Basov, D.N.: Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging. Science 318, 1750 (2007).CrossRefGoogle ScholarPubMed
Chae, B.G., Kim, H.T., Yun, S.J., Kim, B.J., Lee, Y.W., Youn, D.H., and Kang, K.Y.: Highly oriented VO2 thin films prepared by sol-gel deposition. Electrochem. Solid-State Lett. 9, C12 (2006).CrossRefGoogle Scholar
Corr, S.A., Grossman, M., Furman, J.D., Melot, B.C., Cheetham, A.K., Heier, K.R., and Seshadri, R.: Controlled reduction of vanadium oxide nanoscrolls: Crystal structure, morphology, and electrical properties. Chem. Mater. 20, 6396 (2008).CrossRefGoogle Scholar
Ashton, T.E., Hevia Borrás, D., Iadecola, A., Wiaderek, K.M., Chupas, P.J., Chapman, K.W., and Corr, S.A.: Microwave-assisted synthesis and electrochemical evaluation of VO2 (B) nanostructures. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 71, 722 (2015).CrossRefGoogle ScholarPubMed
Pan, J., Zhong, L., Li, M., Luo, Y., and Li, G.: Microwave-assisted solvothermal synthesis of VO2 hollow spheres and their conversion into V2O5 hollow spheres with improved lithium storage capability. Chem.—Eur. J. 22, 1461 (2016).CrossRefGoogle ScholarPubMed
Littlejohn, A.J., Yang, Y., Lu, Z., Shin, E., Pan, K.C., Subramanyam, G., Vasilyev, V., Leedy, K., Quach, T., Lu, T.M., and Wang, G.C.: Naturally formed ultrathin V2O5 heteroepitaxial layer on VO2 /sapphire(001) film. Appl. Surf. Sci. 419, 365 (2017).CrossRefGoogle Scholar
Sahana, M.B., Dharmaprakash, M.S., and Shivashankar, S.A.: Microstructure and properties of VO2 thin films deposited by MOCVD from vanadyl acetylacetonate. J. Mater. Chem. 12, 333 (2002).CrossRefGoogle Scholar
Chen, L., Fiore, M., Wang, J.E., Ruffo, R., Kim, D.-K., and Longoni, G.: Readiness level of sodium-ion battery technology: A materials review. Adv. Sustain. Syst. 2, 1700153 (2018).CrossRefGoogle Scholar
Wang, C., Ping, W., Bai, Q., Cui, H., Hensleigh, R., Wang, R., Brozena, A.H., Xu, Z., Dai, J., Pei, Y., Zheng, C., Pastel, G., Gao, J., Wang, X., Wang, H., Zhao, J., Yang, B., Luo, J., Mo, Y., Dunn, B., and Hu, L.: A general method to synthesize and sinter bulk ceramics in seconds. Science 368, 521 (2020).CrossRefGoogle ScholarPubMed
Zhang, C., Wang, X., Liang, Q., Liu, X., Weng, Q., Liu, J., Yang, Y., Dai, Z., Ding, K., Bando, Y., Tang, J., and Golberg, D.: Amorphous phosphorus/nitrogen-doped graphene paper for ultrastable sodium-ion batteries. Nano Lett. 16, 2054 (2016).CrossRefGoogle ScholarPubMed
Grebenkemper, J.H., Bocarsly, J.D., Levin, E.E., Seward, G., Heikes, C., Brown, C., Misra, S., Seeler, F., Schierle-Arndt, K., Wilson, S.D., and Seshadri, R.: Rapid microwave preparation and composition tuning of the high-performance magnetocalorics (Mn,Fe)2(P,Si). ACS Appl. Mater. Interfaces 10, 7208 (2018).CrossRefGoogle Scholar
Siamaki, A.R., Khder, A.E.R.S., Abdelsayed, V., El-Shall, M.S., and Gupton, B.F.: Microwave-assisted synthesis of palladium nanoparticles supported on graphene: A highly active and recyclable catalyst for carbon-carbon cross-coupling reactions. J. Catal. 279, 1 (2011).CrossRefGoogle Scholar
Pedersen, S.L., Tofteng, A.P., Malik, L., and Jensen, K.J.: Microwave heating in solid-phase peptide synthesis. Chem. Soc. Rev. 41, 1826 (2012).CrossRefGoogle ScholarPubMed
Behrendt, R., White, P., and Offer, J.: Advances in Fmoc solid-phase peptide synthesis. J. Pept. Sci. 22, 4 (2016).CrossRefGoogle ScholarPubMed
Bhat, M.H., Miura, A., Vinatier, P., Levasseur, A., and Rao, K.J.: Microwave synthesis of lithium lanthanum titanate. Solid State Commun. 125, 557 (2003).CrossRefGoogle Scholar
Guo, J., Dong, C., Yang, L., and Fu, G.: A green route for microwave synthesis of sodium tungsten bronzes NaxWO3 (0<x<1). J. Solid State Chem. 178, 58 (2005).CrossRefGoogle Scholar
Iwasaki, M., Takizawa, H., Uheda, K., Endo, T., and Shimada, M.: Microwave synthesis of LaCrO. J. Mater. Chem. 8, 2765 (1998).CrossRefGoogle Scholar
Liu, Y.F., Liu, X.Q., and Meng, G.Y.: A novel route of synthesizing La1-xSrxCoO3 by microwave irradiation. Mater. Lett. 48, 176 (2001).CrossRefGoogle Scholar
Muir, S.W., Rachdi, O.D., and Subramanian, M.A.: Rapid microwave synthesis of the iron arsenides NdFeAsO and NdF0.9Co0.1AsO. Mater. Res. Bull. 47, 798 (2012).CrossRefGoogle Scholar
Rao, K.J., Ramakrishnan, P.A., and Gadagkar, R.: Microwave preparation of oxide bronzes. J. Solid State Chem. 148, 100 (1999).CrossRefGoogle Scholar
Saremi-Yarahmadi, S., Vaidhyanathan, B., and Wijayantha, K.G.U.: Microwave-assisted low temperature fabrication of nanostructured α-Fe2O3 electrodes for solar-driven hydrogen generation. Int. J. Hydrogen Energy 35, 10155 (2010).CrossRefGoogle Scholar
Kitchen, H.J., Vallance, S.R., Kennedy, J.L., Tapia-Ruiz, N., Carassiti, L., Harrison, A., Whittaker, A.G., Drysdale, T.D., Kingman, S.W., and Gregory, D.H.: Modern microwave methods in solid-state inorganic materials chemistry: From fundamentals to manufacturing. Chem. Rev. 114, 1170 (2014).CrossRefGoogle Scholar
Levin, E.E., Grebenkemper, J.H., Pollock, T.M., and Seshadri, R.: Protocols for high temperature assisted-microwave preparation of inorganic compounds. Chem. Mater. 31, 7151 (2019).CrossRefGoogle Scholar
Metaxas, A.C. and Meredith, R.J.: Industrial Microwave Heating, 1st ed. (The Institute of Engineering and Technology, London, 1989), pp. 136.Google Scholar
Peng, Z., Hwang, J.Y., Mouris, J., Hutcheon, R., and Huang, X.: Microwave penetration depth in materials with non-zero magnetic susceptibility. ISIJ Int. 50, 1590 (2010).CrossRefGoogle Scholar
Emond, N., Hendaoui, A., Delprat, S., Chaker, M., and Wu, K.: Theoretical and experimental investigation of thermo-tunable metal-insulator-vanadium dioxide coplanar waveguide structure. IEEE Trans. Microw. Theory Tech. 65, 1443 (2017).CrossRefGoogle Scholar
Predel, F.: Phase Equilibria, Crystallographic and Thermodynamic Data of Binary Alloys (Springer-Verlag, Vol. 12D, Berlin, 2016).CrossRefGoogle Scholar
Shannon, R.D. and Prewitt, C.T.: Effective ionic radii in oxides and fluorides. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 25, 925 (1969).CrossRefGoogle Scholar
Egami, T. and Billinge, S.J.L.: Underneath the Bragg Peaks: Structural Analysis of Complex Materials, 1st ed. (Elsevier, Oxford, 2003).CrossRefGoogle Scholar
Tang, C., Georgopoulos, P., Fine, M.E., Cohen, J.B., Nygren, M., Knapp, G.S., and Aldred, A.: Local atomic and electronic arrangements in WxV1-xO2. Phys. Rev. B 31, 1000 (1985).CrossRefGoogle ScholarPubMed
Braham, E.J., Sellers, D., Emmons, E., Villarreal, R., Asayesh-Ardakani, H., Fleer, N.A., Farley, K.E., Shahbazian-Yassar, R., Arròyave, R., Shamberger, P.J., and Banerjee, S.: Modulating the hysteresis of an electronic transition: Launching alternative transformation pathways in the metal-insulator transition of vanadium(IV) oxide. Chem. Mater. 30, 214 (2018).CrossRefGoogle Scholar
Toby, B.H. and Von Dreele, R.B.: GSAS-II: The genesis of a modern open-source all purpose crystallography software package. J. Appl. Crystallogr. 46, 544 (2013).CrossRefGoogle Scholar
Han, J.-H. and Kim, D.-Y.: Analysis of the proportionality constant correlating the mean intercept length to the average grain size. Acta Met. Mater. 43, 3185 (1995).CrossRefGoogle Scholar
Juhás, P., Farrow, C.L., Yang, X., Knox, K.R., and Billinge, S.J.L.: Complex modeling: A strategy and software program for combining multiple information sources to solve ill posed structure and nanostructure inverse problems. Acta Crystallogr. Sect. A Found. Adv. 71, 562 (2015).CrossRefGoogle ScholarPubMed
Supplementary material: PDF

Wilson et al. supplementary material

Wilson et al. supplementary material

Download Wilson et al. supplementary material(PDF)
PDF 1.1 MB