Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-01T12:31:33.327Z Has data issue: false hasContentIssue false

Acoustic emission study of microcracking in 123-type ceramic superconductors

Published online by Cambridge University Press:  31 January 2011

T. J. Richardson
Affiliation:
Materials and Chemical Sciences Division, Lawrence Berkeley Laboratory, Berkeley, California 94720
L. C. De Jonghe
Affiliation:
Materials and Chemical Sciences Division, Lawrence Berkeley Laboratory, Berkeley, California 94720
Get access

Abstract

Acoustic emission from sintered ceramic YBa2Cu3O7−x (YBCO) superconductor pellets provides a direct measure of microcracking behavior during processing. By detection and statistical analysis of acoustic events, the effects of cooling rates, processing atmosphere, average grain size, additives, and grain alignment on microcracking in YBCO have been studied. The onset temperature and duration of acoustic emission during cooling correlate well with the oxygen partial pressure in the furnace. Rapid changes in oxygen partial pressure at constant temperature produce acoustic emission that is characteristic of microcracking. A reported critical grain size for microcracking in sintered polycrystalline YBCO of about 1 μm has been confirmed. Two superconducting compounds, YSrBaCu3O7−x and LaBaCaCu3O7−x with the 123 structure but with smaller crystallographic anisotropy were also examined. Recommendations are made for minimizing microcracking during processing of superconducting ceramics.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Ekin, J. W., Braginski, A. I., Panson, A. J., Janocko, M. A., Capone, D. W., II, Zaluzec, N. J., Flandermeyer, B., de Lima, O. F., Hong, M., Kwo, J., and Liou, S. H., J. Appl. Phys. 62, 4821 (1987).CrossRefGoogle Scholar
2Larbalestier, D. C., Daeumling, M., Cai, X., Seuntjens, J., McKinnell, J., Hampshire, D., Lee, P., Meingast, C., Willis, T., Muller, H., Ray, R. D., Dillenburg, R. G., Hellstrom, E. E., and Joynt, R., J. Appl. Phys. 62, 3308 (1987).CrossRefGoogle Scholar
3Paterno, G., Alvani, C., Casadio, S., Gambardella, U., and Maritato, L., Appl. Phys. Lett. 53, 609 (1988).CrossRefGoogle Scholar
4Dimos, D., Chaudhari, P., Mannhart, J., and LeGoues, F. K., Phys. Rev. Lett. 61, 219 (1988).CrossRefGoogle Scholar
5Shaw, T. M., Shinde, S. L., Dimos, D., Cook, R. F., Duncome, P. R., and Kroll, C., J. Mater. Res. 4, 248 (1989).CrossRefGoogle Scholar
6Reddi, B. V., Jain, K., Singh, S., Tripathi, R. B., Khurana, B. S., Kotnala, R. K., Khullar, S. M., Goel, R. C., Rao, S. U. M., Nagpal, K. C., Singhal, S., and Das, B. K., Supercond. Sci. Technol. 1, 148 (1988).CrossRefGoogle Scholar
7Puzniak, R., Chen, D-X., Gyorgy, E. M., and Rao, K. V., J. Appl. Phys. 65, 4344 (1989).CrossRefGoogle Scholar
8Dunegan, H. L., Harris, D. O., and Tatro, C. A., Eng. Fracture Mechanics 1, 105 (1968).CrossRefGoogle Scholar
9Eisenblatter, J., “Acoustic Emission”, translated by Nicoll, A. R. (Deutsche Gesellschaft fur Metallkunde, Oerursel, FRG, 1980), p. 1.Google Scholar
10O'Bryan, H. M. and Gallagher, P. K., J. Mater. Res. 3, 619 (1988).CrossRefGoogle Scholar
11Tu, K. N., Yeh, N. C., Park, S. I., and Tsuei, C. C., Phys. Rev. B 39, 304 (1989).CrossRefGoogle Scholar
12Shi, D., Zhang, K., and Capone, D. W. II, J. Appl. Phys. 64, 1995 (1988).CrossRefGoogle Scholar
13Jorgensen, J. D., Beno, M. A., Hinks, D. G., Soderholm, L., Volin, K. J., Hitterman, R. L., Grace, J. D., Schuller, I. K., Segre, C. U., Zhang, K., and Kleefisch, M. S., Phys. Rev. B 36, 3608 (1987).CrossRefGoogle Scholar
14Beyers, R., Lim, G., Engler, E. M., Lee, V. Y., Ramirez, M. L., Savoy, R. J., Jacowitz, R. D., Shaw, T. M., LaPlaca, S., Boehme, R., Tsuei, C. C., Park, S. I., Shafer, M. W., and Gallagher, W. J., Appl. Phys. Lett. 51, 614 (1987).CrossRefGoogle Scholar
15Shi, D. and Capone, D. W., II, Appl. Phys. Lett. 53, 159 (1988).CrossRefGoogle Scholar
16Buechele, A. C., De Jonghe, L. C., and Hitchcock, D., J. Electrochem. Soc. 130, 1042 (1983).CrossRefGoogle Scholar
17Worrell, C. A. and Redfern, B. A. W., J. Mater. Sci. 13, 1515 (1978).CrossRefGoogle Scholar
18Ohya, Y., Nakagawa, Z., and Hamano, K., J. Am. Ceram. Soc. 70, C184 (1987).CrossRefGoogle Scholar
19Beattie, A. G., Acoustic, J.Emission 2, 95 (1983).Google Scholar
20McCallum, R. W., J. Metals 41, 50 (1989).Google Scholar
21Veal, B. W., Kwok, W. K., Umezawa, A., Crabtree, G. W., Jorgensen, J. D., Downey, J. W., Nowicki, L. J., Mitchell, A. W., Paulikas, A. P., and Sowers, C. H., Appl. Phys. Lett. 51, 279 (1987).CrossRefGoogle Scholar
22Peng, J. L., Klavins, P., Shelton, R. N., Radousky, H. B., Hahn, P. A., Bernardez, L., and Costantino, M., Phys. Rev. B 39, 9074 (1989).CrossRefGoogle Scholar
23Koller, A. and Fiedlerova, J., Thermochim. Acta 92, 445 (1985).CrossRefGoogle Scholar
24Peters, P. N., Sisk, R. C., Urban, E. W., Huang, C. Y., and Wu, M. K., Appl. Phys. Lett. 52, 2066 (1988).CrossRefGoogle Scholar
25Malik, M. K., Nair, V. D., Biswas, A. R., Raghavan, R. V., Chaddah, P., Mishra, P. K., Kumar, G. R., and Dasannacharya, B. A., Appl. Phys. Lett. 52, 1525 (1988).CrossRefGoogle Scholar
26Peterson, G. G., Weinberger, B. R., Lynds, L., and Krasinski, H. A., J. Mater. Res. 3, 605 (1988).CrossRefGoogle Scholar
27Prasad, R., Soni, N. C., Mohan, A., Khera, S. K., Nair, K. U., Gupta, C. K., Tomy, C. V., and Malik, S. K., Mater. Lett. 7, 9 (1988).CrossRefGoogle Scholar
28Clarke, D. R., Shaw, T. M., and Dimos, D., J. Am. Ceram. Soc. 72, 1103 (1989).CrossRefGoogle Scholar
29Severin, J. W. and De, G.With, Brit. Ceram. Proc. 40, 249 (1988).Google Scholar
30Farrell, D. E., Chandrasekhar, B. S., DeGuire, M. R., Fang, M. M., Kogan, V. G., Clem, J. R., and Finnemore, D. K., Phys. Rev. B 36, 4025 (1987).CrossRefGoogle Scholar
31Chen, K., Maheswaran, B., Liu, Y. P., Giessen, B. C., Chan, C., and Markiewicz, R. S., Appl. Phys. Lett. 55, 289 (1989).CrossRefGoogle Scholar
32Naito, N. and Jachim, L., to be published.Google Scholar
33De Leeuw, D. M., Mutsaers, C. A. H. A., Van Hal, H. A. M., Verweij, H., Carim, A. H., and Smoorenburg, H. C. A., Physica C 156, 126 (1988).CrossRefGoogle Scholar
34Bransky, I., Bransky, J., Maartense, I., and Peterson, T. L., J. Appl. Phys. 66, 5510 (1989).CrossRefGoogle Scholar
35Cooke, D. W., Jahan, M. S., Smith, J. L., Maez, M. A., Hults, W. L., Raistrick, I. D., Peterson, D. E., O'Rourke, J. A., Richardson, S. A., Doss, J. D., Gray, E. R., Rusnak, B., Lawrence, G. P., and Fortgang, C., Appl. Phys. Lett. 54, 960 (1989).CrossRefGoogle Scholar
36Schulz, R., Trudeau, M., Mirza, J., Critchlow, P., Begin, G., Roberge, R., Parent, L., and Moreau, C., Supercond. Sci. Technol. 1, 180 (1988).CrossRefGoogle Scholar
37Stucki, F., Bruesch, P., and Baumann, T., Physica C 156, 461 (1988).CrossRefGoogle Scholar
38Chaudhari, P., Mannart, J., Dimos, D., Tsuei, C. C., Chi, J., Oprysko, M. M., and Scheuermann, M., Phys. Rev. Lett. 60, 1653 (1988).CrossRefGoogle Scholar
39Nakahara, S., Fisanick, G. J., Yan, M. F., van Dover, R. B., and Boone, T., Appl. Phys. Lett. 53, 2105 (1988).CrossRefGoogle Scholar
40Romano, L. T., Wilshaw, P. R., Long, N. J., and Grovenor, C. R. M., Mater. Sci. Eng. A109, 293 (1989).CrossRefGoogle Scholar
41Mannhart, J., Chaudhari, P., Dimos, D., Tsuei, C. C., and McGuire, T. R., Phys. Rev. Lett. 61, 2476 (1988).CrossRefGoogle Scholar