Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-07T11:10:49.923Z Has data issue: false hasContentIssue false

Activation energy for Pt2Si and PtSi formation measured over a wide range of ramp rates

Published online by Cambridge University Press:  03 March 2011

E.G. Colgan
Affiliation:
IBM Microelectronics Division, East Fishkill, New York 12533
Get access

Abstract

The activation energies, Ea's, for Pt2Si and PtSi formation were determined using in situ resistance measurements with ramp rates ranging from 0.4 °C/m to 100 °C/s. Measurements were performed using both conventional furnace and rapid thermal annealing (RTA). Pt films were evaporated on undoped polycrystalline Si and single-crystal Si on sapphire substrates. The Ea's determined from Kissinger plots were 1.63 ± 0.05 and 1.61 ± 0.06 eV for Pt2Si formation and 1.83 ± 0.06 and 1.83 ± 0.07 eV for PtSi formation with polycrystalline Si and silicon on sapphire substrates, respectively. These are the first reported measurements of Ea's for Pt2Si and PtSi formation over such a wide range of heating rates (greater than four orders of magnitude) and at such high heating rates. The phase formation sequence remained the same for the range of heating rates examined.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Maex, K., Mater. Sci. Eng. R11 (34), 53 (1993).Google Scholar
2Canali, C., Catallani, C., Prudenziati, M., Wadlin, W. H., and Evans, C.A., Jr., Appl. Phys. Lett. 31(1), 43 (1977).CrossRefGoogle Scholar
3Crider, C. A., Poate, J. M., Rowe, J. E., and Sheng, T.T., J. Appl. Phys. 52(4), 2860 (1981).CrossRefGoogle Scholar
4Wittmer, M., J. Appl. Phys. 54(9), 5061 (1983).Google Scholar
5Takai, H., Psaras, P. A., and Tu, K.N., J. Appl. Phys. 58(11), 4165 (1985).Google Scholar
6Naem, A. A., J. Appl. Phys. 64(8), 4161 (1988).CrossRefGoogle Scholar
7Gaiduk, P. I. and Nylandsted Larsen, A., Appl. Phys. A53, 168 (1991).CrossRefGoogle Scholar
8Pant, A. K., Murarka, S. P., Shepard, C., and Lanford, W., J. Appl. Phys. 72(5), 1833 (1992).CrossRefGoogle Scholar
9Nava, F., Valeri, S., Majni, G., and Cembali, A., J. Appl. Phys. 52(11), 6641 (1981).CrossRefGoogle Scholar
10Poate, J. M. and Tisone, T. C., Appl. Phys. Lett. 24(8), 391 (1974).CrossRefGoogle Scholar
11Pan, J. T. and Blech, I. A., Thin Solid Films 113, 129 (1984).Google Scholar
12Lien, C-D., Nicolet, M-A., and Lau, S. S., Thin Solid Films 143, 63 (1986).Google Scholar
13Nicolet, M-A. and Lau, S.S., in VLSI Electronics: Microstructure Science, edited by Einspruch, N.G. and Larrabee, G.B. (Academic Press, New York, 1983), Vol. 6, Chap. 6.Google Scholar
14Mittemaijer, E. J., Van Gent, A., and van der Schaaf, P.J., Metall. Trans. A 17A, 1441 (1986).CrossRefGoogle Scholar
15Mittemeijer, E. J., Cheng, L., van der Schaaf, P.J., Brakman, C. M., and Korevaar, B.M., Metall. Trans. A 19A, 925 (1988).CrossRefGoogle Scholar
16Colgan, E. G., Clevenger, L. A., and Cabral, C. Jr., Appl. Phys. Lett. 65(16), 2009 (1994).Google Scholar
17Colgan, E. G., Cabral, C. Jr., and Kotecki, D.E., J. Appl. Phys. 77(2), 614 (1995).Google Scholar
18Kawazu, Y., Kudo, H., Onari, S., and Arai, T., Jpn. J. Appl. Phys. 29(4), 729 (1990).CrossRefGoogle Scholar