Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-16T18:25:44.465Z Has data issue: false hasContentIssue false

Adhesion of nanostructured diamond film on a copper–beryllium alloy

Published online by Cambridge University Press:  31 January 2011

Shane A. Catledge*
Affiliation:
Department of Physics, University of Alabama at Birmingham, Birmingham, Alabama 35294-1170
Yogesh K. Vohra
Affiliation:
Department of Physics, University of Alabama at Birmingham, Birmingham, Alabama 35294-1170
Damon D. Jackson
Affiliation:
Lawrence Livermore National Laboratory, Livermore, California 94551
Samuel T. Weir
Affiliation:
Lawrence Livermore National Laboratory, Livermore, California 94551
*
a)Address all correspondence to this author. e-mail: catledge@uab.edu
Get access

Abstract

Microwave plasma chemical vapor deposition (CVD) was used to coat nanostructured diamond onto a copper–beryllium alloy (∼1.7 wt% Be) commonly used as a nonmagnetic gasket material in diamond anvil cell devices. The coating is expected to be useful in preventing plastic flow of Cu–Be gaskets in diamond anvil cell devices, thus allowing for increased sample volume at high pressures and leading to improved sensitivity of magnetic measurements. The coatings were characterized by Raman spectroscopy, glancing-angle x-ray diffraction, microscopy (optical, scanning electron, and atomic force), Rockwell indentation, and nanoindentation. CVD diamond deposition on pure copper substrates has historically resulted in poor coating adhesion caused by the very large thermal expansion mismatch between the substrate and coating as well as the inability of copper to form a carbide phase at the interface. While an interfacial graphite layer formed on the pure copper substrates and resulted in complete film delamination, well-adhered 12.5 μm thick nanostructured diamond coatings were produced on the copper–beryllium (Cu–Be) alloy. The nanostructured diamond coatings on Cu–Be exhibit hardness of up to 84 GPa and can withstand strains from Rockwell indentation loads up to 150 kg without delamination.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Vohra, Y.K.Weir, S.T.: Designer diamond anvils in high pressure research—Recent results and future opportunities in High-Pressure Phenomena, edited by R.J. Hemley, G.I. Chiarotti, M, Bernascoini, and L. Ulivi (Proc. International School of Physics—Enrico fermi, Course CXLVII IOS Press Amsterdam 2002 87–105Google Scholar
2Merkel, S., Hemley, R.Mao, H-K.: Finite-element modeling of diamond deformation at multimegabar pressures. Appl. Phys. Lett. 74, 656 1999CrossRefGoogle Scholar
3Akella, J., Weir, S.T., Vohra, Y.K., Prokop, H., Catledge, S.A.Chesnut, G.N.: High pressure phase transformations in neodymium studied in a diamond anvil cell using diamond-coated rhenium gaskets. J. Phys.: Condens. Matter 11, 6515 1999Google Scholar
4Jackson, D., Aracne-Ruddle, C., Malba, V., Weir, S.T., Catledge, S.A., Vohra, Y.K.: Magnetic susceptibility measurements at high pressure using designer diamond anvils. Rev. Sci. Instrum. 74, 2467 2003CrossRefGoogle Scholar
5Zuo, D., Li, X.F., Wang, M., Li, L.Lu, W.Z.: Adhesion improvement of CVD diamond film by introducing an electro-deposited interlayer. J. Mater. Process. Technol. 138, 455 2003CrossRefGoogle Scholar
6Narayan, J., Godbole, V.P., Matera, G.Singh, R.K.: Enhancement of nucleation and adhesion of diamond films on copper, stainless steel, and silicon substrates. J. Appl. Phys. 71, 966 1992CrossRefGoogle Scholar
7Ashfold, M.N.R., May, P.W., Rego, C.A.Everitt, N.M.: Thin film diamond by chemical vapour deposition methods. Chem. Soc. Rev. 23, 21 1994CrossRefGoogle Scholar
8Vedawyas, M., Sivananthan, G.Kumar, A.: Textured polycrystalline diamond films on Cu metal substrates by hot filament chemical vapor deposition. Mater. Sci. Eng., B 78, 16 2000CrossRefGoogle Scholar
9Fan, Q.H., Pereira, E.Grácio, J.: Diamond deposition on copper: Studies on nucleation, growth, and adhesion behaviours. J. Mater. Sci. 34, 1353 1999CrossRefGoogle Scholar
10Fan, Q.H., Fernandes, A., Pereira, E.Grácio, J.: Adherent diamond coating on copper using an interlayer. Vacuum 52, 193 1999CrossRefGoogle Scholar
11Singh, J.: Nucleation and growth mechanism of diamond during hot-filament chemical vapour deposition. J. Mater. Sci. 29, 2761 1994CrossRefGoogle Scholar
12Ong, T.P., Xiong, F., Chang, R.P.H.White, C.W.: Nucleation and growth of diamond on carbon-implanted single crystal copper surfaces. J. Mater. Res. 7, 2429 1992CrossRefGoogle Scholar
13Spitzyn, B.V., Bouilov, L.L.Derjaguin, B.V.: Vapor growth of diamond on diamond and other surfaces. J. Cryst. Growth 52, 219 1981CrossRefGoogle Scholar
14Narayan, J., Godbole, V.P.White, C.W.: Laser method for synthesis and processing of continuous diamond films on nondiamond substrates. Science 252, 416 1991CrossRefGoogle ScholarPubMed
15Catledge, S.A., Borham, J., Vohra, Y.K., Lacefield, W.R.Lemons, J.E.: Nanoindentation hardness and adhesion investigations of vapor deposited nanostructured diamond films. J. Appl. Phys. 91, 5347 2002CrossRefGoogle Scholar
16Toprani, N., Catledge, S.A., Vohra, Y.K.Thompson, R.: Interfacial adhesion and toughness of nanostructured diamond coatings. J. Mater. Res. 15, 1052 2000CrossRefGoogle Scholar
17Catledge, S.A.Vohra, Y.K.: Effect of nitrogen feedgas addition on the mechanical properties of nano-structured carbon coatings in Mechanical Properties of Structural Films, ASTM STP 1413 edited by C.L. Muhlstein and S.T. Brown ASTM International West Conshohocken, PA 2001 127–138Google Scholar
18Fabes, B.D., Oliver, W.C., McKee, R.A.Walker, F.J.: The determination of film hardness from the composite response of film and substrate to nanometer scale indentations. J. Mater. Res. 7, 3056 1992CrossRefGoogle Scholar
19McHargue, J.: In Applications of Diamond Films and Related Materials, edited by Y. Tzeng, M. Yoshikawa, M. Murakawa, and A. Feldman Materials Science Monographs 73, Elsevier Amsterdam 1991 113Google Scholar
20Oliver, W.C.Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 1992CrossRefGoogle Scholar
21Catledge, S.A., Comer, W.Vohra, Y.K.: In situ diagnostics of film thickness and surface roughness of diamond films on a Ti–6Al–4V alloy by optical pyrometry. Appl. Phys. Lett. 73, 181 1998CrossRefGoogle Scholar
22Ascarelli, P.Fontana, S.: Dissimilar grit-size dependence of the diamond nucleation density on substrate surface pretreatments. Appl. Surf. Sci. 64, 307 1993CrossRefGoogle Scholar
23Lux, B.Haubner, R.: In Diamond and Diamond-like Films and Coatings, edited by R.E. Clausing, L.L. Horton, J.C. Angus, and P. Koidl Plenum Press New York 1991 579CrossRefGoogle Scholar
24Popovici, G.Prelas, M.A.: Nucleation and selective deposition of diamond thin films. Phys. Status Solidi A 132, 233 1992CrossRefGoogle Scholar
25Bühlmann, S., Blank, E., Haubner, R.Lux, B.: Characterization of ballas diamond depositions. Diam. Relat. Mater. 8, 194 1999CrossRefGoogle Scholar
26Ferrari, A.C.Robertson, J.: Origin of the 1150 cm−1 Raman mode in nanocrystalline diamond. Phys. Rev. B 63, 121405R 2001CrossRefGoogle Scholar
27Pfeiffer, R., Kuzmany, H., Knoll, P., Bokova, S., Salk, N.Günther, B.: Evidence for trans-polyacetylene in nano-crystalline diamond films. Diamond Relat. Mater. 12, 268 2003CrossRefGoogle Scholar
28Powder Diffraction File, Card Nos. 75-0623 and 85-1326 (Joint Committee on Powder Diffraction Standards, Swarthmore, PA, 2001.)Google Scholar
29Berman, R.: Properties and Growth of Diamond, edited by G. Davies EMIS Data Reviews Series No. 9 INSPEC London 1994 23–26Google Scholar
31Chowdhury, S., Hillman, D.A., Catledge, S.A., Konovalov, V.Vohra, Y.K.: Synthesis of ultrasmooth nanostructured diamond films by microwave plasma chemical vapor deposition using a He/H2/CH4/N2 gas mixture. J. Mater. Res. 21, 2675 2006CrossRefGoogle Scholar
32Leyland, A.Matthews, A.: On the significance of the H/E ratio in wear control: A nanocomposite coating approach to optimised tribological behavior. Wear 246, 1 2000CrossRefGoogle Scholar
33Halling, J.: Surface films in tribology. Tribol. 1, 15 1982Google Scholar
34Liu, H.Dandy, D.S.: Studies on nucleation process in diamond CVD: An overview of recent developments. Diamond Relat. Mater. 4, 1173 1995CrossRefGoogle Scholar
35Veprek, S.: The search for novel, superhard materials. J. Vac. Sci. Technol., A 17, 2401 1999CrossRefGoogle Scholar
36Voevodin, A.A.Zabinski, J.S.: Load-adaptive crystalline– amorphous nanocomposites. J. Mater. Sci. 33, 319 1998CrossRefGoogle Scholar
37Wolter, S.D., Stoner, B.R., Ma, G-H.M.Glass, J.T.: In vacuo surface analytical studies of diamond nucleation on copper versus silicon in Novel Forms of Carbon,, edited by C.L. Renschler, J.J. Pouch, and D.M. Cox Mater. Res. Soc. Symp. Proc. 270 Pittsburgh, PA, 1992 347CrossRefGoogle Scholar