Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-19T02:13:54.608Z Has data issue: false hasContentIssue false

Characterization of GaN grown on sapphire by laser-induced molecular beam epitaxy

Published online by Cambridge University Press:  31 January 2011

H. Zhou*
Affiliation:
Max-Planck-Institut für Metallforschung, Heisenbergstr, 1, 70569 Stuttgart, Germany
A. Rühm
Affiliation:
Max-Planck-Institut für Metallforschung, Heisenbergstr, 1, 70569 Stuttgart, Germany
N. Y. Jin-Phillipp
Affiliation:
Max-Planck-Institut für Metallforschung, Heisenbergstr, 1, 70569 Stuttgart, Germany
F. Phillipp
Affiliation:
Max-Planck-Institut für Metallforschung, Heisenbergstr, 1, 70569 Stuttgart, Germany
M. Gross
Affiliation:
Institut für Technische Physik, Pfaffenwaldring 38–40, 70569 Stuttgart, Germany
H. Schröder
Affiliation:
Institut für Technische Physik, Pfaffenwaldring 38–40, 70569 Stuttgart, Germany
*
a)On leave of absence from Institute of Solid State Physics, Academia Sinica, Hefei 230031, People's Republic of China. e-mail: hzhou@wselix.mpi-stuttgart.mpg.de
Get access

Abstract

GaN grown on sapphire (α–Al2O3) was characterized by laser-induced molecular beam epitaxy. Threading dislocations with Burgers vectors of 1/3〈1120〉, 1/3〈1123〉 and [0001] were observed with a predominance of the first type. Additionally, inversion domains with Ga-polarity existed with respect to the adjacent matrix, which was of N-polarity. The dislocation densities and coherence lengths were deduced from x-ray diffraction and found to be in accordance with those measured by transmission electron microscopy. Both displacement fringe contrast analysis and high-resolution transmission electron microscopy results indicated that the inversion domain boundaries had Ga–N bonds between domains and the adjacent matrix.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ponce, F.A., Bour, D.P., Young, W.T., Saunders, M., and Steeds, J.W., Appl. Phys. Lett. 69, 337 (1996).CrossRefGoogle Scholar
2.Ning, X.J., Chien, F.R., Pirouz, P., Yang, J.W., and Asif Khan, M., J. Mater. Res. 11, 580 (1996).CrossRefGoogle Scholar
3.Heying, B., Wu, X.H., Keller, S., Li, Y., Kapolnek, D., Keller, B.P., DenBaars, S.P., and Speck, J.S., Appl. Phys. Lett. 68, 643 (1996).CrossRefGoogle Scholar
4.Smith, D.J., Chandrasekhar, D., Sverdlov, B., Botchkarev, A., Salvador, A., and Morkoc, H., Appl. Phys. Lett. 67, 1830 (1995).CrossRefGoogle Scholar
5.Romano, L.T., Krusor, B.S., Singh, R., and Moustakas, T.D., J. Elect. Mat. 26, 285 (1997).CrossRefGoogle Scholar
6.Qian, W., Skowronski, M., De Graef, M., Doverspike, K., Rowland, L.B., and Gaskill, D.K., Appl. Phys. Lett. 66, 1252 (1995).CrossRefGoogle Scholar
7.Xiao, R.F., Liao, H.B., Cue, N., Sun, X.W., and Kwok, H.S., J. Appl. Phys. 80, 4226 (1996).CrossRefGoogle Scholar
8.Feiler, D., Williams, R.S., Talin, A.A., Yoon, H., and Goorsky, M.S., J. Crystal Growth 171, 12 (1997).CrossRefGoogle Scholar
9.Gross, M., Henn, G., and Schröder, H., Mater. Sci. Eng. B 50, 16 (1997).CrossRefGoogle Scholar
10.Gross, M., Henn, G., and Schröder, H., Proc. 2nd Symp. on III-V Nitride Materials and Processes, edited by Abernathy, C.R., Brown, W.D., Buckley, D.N., Kamp, M., Moustakas, T.D., Pearton, S.J., and Ren, F. (Electrochemical Society, Inc., Pennington, NJ), 1997, Vol. 34, p. 236.Google Scholar
11.Zhou, H., Phillipp, F., Gross, M., and Schröder, H., Mater. Sci. Eng. B 68, 26 (1999).CrossRefGoogle Scholar
12.Bostanjoglo, O., Niedrig, R., and Wedel, B., J. Appl. Phys. 76, 3045 (1994).CrossRefGoogle Scholar
13.Sverdlov, B.N., Martin, G.A., Morkoc, H., and Smith, D.J., Appl. Phys. Lett. 67, 2063 (1995).CrossRefGoogle Scholar
14.Cherns, D., Young, W.T., Saunders, M., Steeds, J.W., Ponce, F.A., and Nakamura, S., Phil. Mag. A 77, 273 (1998).CrossRefGoogle Scholar
15.Basu, S.N., Lei, T., and Moustakas, T.D., J. Mater. Res. 9, 2370 (1994).CrossRefGoogle Scholar
16.Wu, X.H., Brown, L.M., Kapolnek, D., Keller, S., Keller, B., DenBaars, S.P., and Speck, J.S., J. Appl. Phys. 80, 3228 (1996).CrossRefGoogle Scholar
17.Romano, L.T., Northrup, J.E., and O, M.A.'Keefe, Appl. Phys. Lett. 69, 2394 (1996).CrossRefGoogle Scholar
18.Rouvière, J.L., Arlery, M., Bourret, A., Niebuhr, R., and Bachem, K.H., in Gallium Nitride and Related Materials, edited by Ponce, F.A., Dupuis, R.D., Nakamura, S., and Edmond, J.A. (Mater. Res. Soc. Symp. Proc. 395, Pittsburgh, PA), p. 393.Google Scholar
19.Rouvière, J.L., Arlery, M., Daudin, B., Feuillet, G., and Briot, O., Mater. Sci. Eng. B 50, 61 (1997).CrossRefGoogle Scholar
20.Daudin, B., Rouvière, J.L., and Arlery, M., Appl. Phys. Lett. 69, 2480 (1996).CrossRefGoogle Scholar
21.Potin, V., Nouet, G., and Ruterana, P., Appl. Phys. Lett. 74, 947 (1999).CrossRefGoogle Scholar
22.Northrup, J.E., Neugebauer, J., and Romano, L.T., Phys. Rev. Lett. 77, 103 (1996).CrossRefGoogle Scholar
23.Holt, D.B., J. Phys. Chem. Solids 30, 1297 (1969).CrossRefGoogle Scholar
24.Stadelman, P.A., Ultramicroscopy 21, 131 (1969).CrossRefGoogle Scholar
25.Serneels, R., Snykers, M., Delarignette, P., Gevers, R., and Amelinckx, S., Phys. Status Solidi B 58, 277 (1973).CrossRefGoogle Scholar
26.Romano, L.T. and Myers, T.H., Appl. Phys. Lett. 71, 3468 (1997).Google Scholar
27.Metzger, T., Höpler, R., Born, E., Ambacher, O., Stutzmann, M., Stömmer, R., Schuster, M., Göbel, H., Christiansen, S., Albrecht, M., and Strunk, H.P., Philos. Mag. A 77, 1013 (1998).CrossRefGoogle Scholar
28.Pelzmann, A., Myers, M., Kirchner, C., Sowada, D., Rotter, T., Kamp, M., Ebeling, K.J., Christiansen, S., Albrecht, M., Strunk, H.P., Holländer, B., and Mantl, S., MRS Internet J. Nitride Semicond. Res. 1, 40 (1996).CrossRefGoogle Scholar