Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-06-04T08:25:49.245Z Has data issue: false hasContentIssue false

Characterization of mechanical nanocrystallization process of amorphous Fe–Mo–Si–B alloy by transmission Mössbauer spectroscopy

Published online by Cambridge University Press:  31 January 2011

X. D. Liu
Affiliation:
State Key Lab for RSA, Institute of Metal Research, Academia Sinica, Shenyang 110015, People's Republic of China
F. Q. Guo
Affiliation:
State Key Lab for RSA, Institute of Metal Research, Academia Sinica, Shenyang 110015, People's Republic of China
K. Lu
Affiliation:
State Key Lab for RSA, Institute of Metal Research, Academia Sinica, Shenyang 110015, People's Republic of China
M. Umemoto
Affiliation:
Department of Production Systems Engineering, Faculty of Engineering, Toyohashi University of Technology, Tempaku-cho, Toyohashi 441, Japan
Get access

Abstract

The nanocrystallization process of the amorphous Fe–Mo–Si–B alloy under ball milling is characterized by means of transmission Mössbauer emission spectroscopy (TMES) in the present paper. It was found that a single α–Fe phase with the bcc structure is formed under ball-milling the amorphous Fe–Mo–Si–B alloy. A significant increase in the relative area of the subspectra of 8Fenn and 7Fenn and a remarkable decrease in isomer shift and half linewidth of the subspectra of various Fe configurations, especially in the case of 6Fenn, were observed during the ball-milling process. The diffusion of metalloid atoms from the bcc α–Fe phase to the remaining amorphous phase and α–Fe/α–Fe grain boundaries is suggested to occur during the mechanical crystallization of the current amorphous alloy based on the above TMES investigations.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Yoshizawa, Y., Oguma, S., and Yamauchi, K., J. Appl. Phys. 64, 6044 (1988).CrossRefGoogle Scholar
2.Lu, K., Wang, J. T., and Wei, W. D., J. Appl. Phys. 69, 522 (1991); K. Lu, Mater. Sci. Eng. R16, 161 (1996).CrossRefGoogle Scholar
3.Liu, X. D., Wang, J. T., and Ding, B. Z., J. Mater. Sci. Lett. 12, 1108 (1993).CrossRefGoogle Scholar
4.Trudeau, M. L., Schulz, R., Dussault, D., and Van Neste, A., Phys. Rev. Lett. 64, 99 (1990).CrossRefGoogle Scholar
5.Trudeau, M. L., Huot, J. Y., Schulz, R., Dussault, D., Van Neste, A., and L'Esperance, G., Phys. Rev. B 45, 4626 (1992).CrossRefGoogle Scholar
6.Scott, M. S., in Amorphous Metallic Alloys, edited by Luborsky, F. E. (Butterworth, London, 1988), p. 144.Google Scholar
7.Herr, U., Jing, J., Birringer, R., and Gleiter, H., Appl. Phys. Lett. 50, 472 (1987).CrossRefGoogle Scholar
8.Liu, X. D., Lu, K., Hu, Z. Q., Ding, B. Z., Zhu, J., and Jiang, J., J. Appl. Phys. 75, 3365 (1994).CrossRefGoogle Scholar
9.Liu, X. D., Zhu, J., Jiang, J., and Wang, J. T., J. Alloys and Compounds 198, 85 (1993).CrossRefGoogle Scholar
10.Guo, F. Q. and Lu, K., Metall. Mater. Trans. (1997, in press).Google Scholar
11.Sterns, M. B., Phys. Rev. 129, 1136 (1963).CrossRefGoogle Scholar
12.Schwarz, R. B., Petrich, R. P., and Saw, C. K., J. Non-Cryst. Solids 76, 281 (1985).CrossRefGoogle Scholar
13.Eckert, J., Schultz, L., Hellstern, E., and Urban, K., J. Appl. Phys. 64, 3224 (1988).CrossRefGoogle Scholar
14.Johnson, W. L., Prog. Mater. Sci. 30, 81 (1986).CrossRefGoogle Scholar
15.Schulz, R., Trudeau, M. L., and van Neste, A., Mater. Sci. Eng. A134, 1354 (1991).CrossRefGoogle Scholar
16.Schwarz, R. B. and Koch, C. C., Appl. Phys. Lett. 49, 146 (1986).CrossRefGoogle Scholar
17.Grigoriew, H. and Jachimowicz, M., J. Appl. Phys. 78, 132 (1995).CrossRefGoogle Scholar
18.Huang, B. H., Perez, R. J., Crawford, P. J., Sharif, A. A., Nutt, S. R., and Lavernia, E. J., Nanostructured Mater. 5, 545 (1995).CrossRefGoogle Scholar
19.Mizotani, V. and Lee, C. H., J. Mater. Sci. 25, 399 (1990).CrossRefGoogle Scholar
20.Schulz, R., Trudeau, M. L., Dussault, D., van Neste, A., and Dignard Bailey, L., Mater. Sci. Eng. A179/180, 516 (1994).CrossRefGoogle Scholar
21.Bansal, C., Fultz, B., and Johnson, W. L., Nanostructured Mater. 4, 919 (1994).CrossRefGoogle Scholar
22.Longworth, G., in Mössbauer Spectroscopy Applied to Inorganic Chemistry, edited by Long, G. J. (Plenum, London, 1984), Vol. 1, Chap. 4.Google Scholar
23.Pound, R. V., Benedeck, G. B., and Drever, R., Phys. Rev. Lett. 7, 405 (1961).CrossRefGoogle Scholar
24.Zhang, B. F., in Mössbauer Spectroscopy (Tianjin University Press, 1991), p. 204.Google Scholar
25.Gleiter, H., Prog. Mater. Sci. 33, 223 (1989).CrossRefGoogle Scholar
26.Liu, X. D., Ph. D. Thesis, Institute of Metal Research, Academia Sinica (1994).Google Scholar
27.Hofler, H. J., Averback, R. S., and Gleiter, H., Philos. Mag. Lett. 68, 99 (1993).CrossRefGoogle Scholar
28.Liu, C. T., White, C. L., and Horton, J. A., Acta Metall. 33, 1587 (1985).CrossRefGoogle Scholar
29.Miller, M. K. and Horton, J. A., J. de Phys. C7, 263 (1986).Google Scholar
30.Wang, W., Zhang, S., and He, X., Acta Metall. Mater. 43, 1693 (1995).CrossRefGoogle Scholar
31.Aust, K. T., Hanneman, R. E., Niessen, P., and Westbrook, J. H., Acta Metall. 16, 291 (1968).CrossRefGoogle Scholar
32.Karlsson, L. and Norden, H., Acta Metall. 36, 35 (1988).CrossRefGoogle Scholar
33.Martin, J. W. and Doherty, R. D., Stability of Microstructure in Metallic System (Cambridge University Press, Cambridge, 1980).Google Scholar