Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-29T13:49:08.988Z Has data issue: false hasContentIssue false

Characterization of YBa2Cu4O8 high temperature electrical properties and thermodynamic stability

Published online by Cambridge University Press:  31 January 2011

B-S. Hong
Affiliation:
Department of Materials Science and Engineering and Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208
T.O. Mason
Affiliation:
Department of Materials Science and Engineering and Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208
Get access

Abstract

Via in situ electrical property measurements (conductivity, Seebeck coefficient) over the temperature range 500–800 °C and oxygen partial pressure range 10−4-1 atm, the equilibrium transport properties and stability range of YBa2Cu4O8 were determined. YBa2Cu4O8 behaves like the intrinsically mixed-valent compound, magnetite (Fe3O4), with small variations in electrical properties with changes in oxygen partial pressure. The decomposition boundary to YBa2Cu3O6+y (or YBa2Cu3.5O7.5±z) and CuO occurs at log(po2, atm) = −1.24 × 104/T(K) + 11.01(773 ⋚ T(K) ⋚ 1073).

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Karpinski, J., Kaldis, E., Jilek, E., Rusiecki, S., and Bucher, B., Nature 336, 660 (1988).CrossRefGoogle Scholar
2.Marshall, A. F., Barton, R. W., Char, K., Kapitulnik, A., Oh, B., Hammond, R. H., and Laderman, S. S., Phys. Rev. B 37, 9353 (1988).CrossRefGoogle Scholar
3.Char, K., Lee, M., Barton, R. W., Marshall, A. F., Bozovic, I., Hammond, R. H., Beasley, M. R., Geballe, T. H., Kapitulnik, A., and Laderman, S. S., Phys. Rev. B 38, 834 (1988).CrossRefGoogle Scholar
4.Morris, D. E., Nickel, J. H., Wei, J. Y. T., Asmar, N. G., Scott, J. S., Scheven, U. M., Hultgren, C. T., Markelz, A. G., Post, J. E., Heaney, P. J., Veblen, D. R., and Hazen, R. M., Phys. Rev. B 39, 7347 (1989).CrossRefGoogle Scholar
5.Cava, R. J., Karpinski, J. J., Peck, W. F., Batlogg, B., Rupp, L. W., Fleming, R. M., A. James, C. W. P., and Marsh, P., Nature 338, 328 (1989).CrossRefGoogle Scholar
6.Kourtakis, K., Robbins, M., Gallagher, P. K., and Tiefel, T., J. Mater. Res. 4, 1289 (1989).CrossRefGoogle Scholar
7.Balachandran, U., Biznek, M. E., Tomlines, G. W., Veal, B. W., and Poeppel, R. B., Physica C 165, 335 (1990).CrossRefGoogle Scholar
8.Pooke, D. M., Buckley, R. G., Presland, M. R., and Tallon, J. L., Phys. Rev. B 41, 6616 (1990).CrossRefGoogle Scholar
9.Jin, S., O'Bryan, H. M., Gallagher, P. K., Tiefel, T. H., Cava, R. J., Fastnacht, R. A., and Kammlott, G. W., Physica C 165, 415 (1990).CrossRefGoogle Scholar
10.Marsh, P., Fleming, R. M., Mandich, M. L., DeSantolo, A. M., Kwo, J., Hong, M., and Martinez-Miranda, L. J., Nature 334, 141 (1988).CrossRefGoogle Scholar
11.Fischer, P., Karpinski, J., Kaldis, E., Jilek, E., and Rusiecki, S., Solid State Commun. 6, 531 (1989).CrossRefGoogle Scholar
12.Kaldis, E., Fischer, P., Hewat, A. W., Hewat, E. A., Karpinski, J., and Rusiecki, S., Physica C 159, 668 (1989).CrossRefGoogle Scholar
13.Morris, D. E., Asmar, N. G., Nickel, J. H., Sid, R. L., and Wei, J. Y. T., Physica C 159, 287 (1989).CrossRefGoogle Scholar
14.Schoenes, J., Karpinski, J., Kaldis, E., Keller, J., and Mora, P., Physica C 166, 145 (1990).CrossRefGoogle Scholar
15.Miyatake, T., Gotoh, S., Koshizuka, N., and Tanaka, S., Nature 341, 41 (1989).CrossRefGoogle Scholar
16.Morris, D. E., Markelz, A. G., Fayn, B., and Nickel, J. H., Physica C 168, 153 (1990).CrossRefGoogle Scholar
17.Karpinski, J., Rusiecki, S., Kaldis, E., Bucher, B., and Jilek, E., Physica C 160, 449 (1989).CrossRefGoogle Scholar
18.Wada, T., Suzuki, N., Ichinose, A., Yaegashi, Y., Yamauchi, H., and Tanaka, S., Appl. Phys. Lett. 57 (1), 81 (1990).CrossRefGoogle Scholar
19.Su, M-Y., Elsbernd, C. E., and Mason, T. O., J. Am. Ceram. Soc. 73 (2), 415 (1990).CrossRefGoogle Scholar
20.Su, M-Y. and Mason, T. O., Physica C 160, 114 (1989).CrossRefGoogle Scholar
21.Trestman-Matts, A., Dorris, S. E., and Mason, T. O., J. Am. Ceram. Soc. 66 (8), 589 (1982).CrossRefGoogle Scholar
22.Bucher, B., Karpinski, J., Kaldis, E., and Wachter, P., Physica C 167, 324 (1990).CrossRefGoogle Scholar
23.Ahuja, D., Dorris, S. E., Su, M-Y., Robinson, Q., Johnson, D. L., and Mason, T. O., in High-Temperature Superconductors, edited by Brodsky, M. B., Dynes, R. C., Kitazawa, K., and Tuller, H. L. (Mater. Res. Soc. Symp. Proc. 99, Pittsburgh, PA, 1988), p. 467.Google Scholar
24.Su, M. Y., Dorris, S. E., and Mason, T. O., J. Solid State Chem. 75, 381 (1988).CrossRefGoogle Scholar
25.Mathews, T. and Jacob, K. L., Appl. Phys. Lett. 57 (5), 511 (1990).CrossRefGoogle Scholar
26.Lindemer, T. B., Washburn, F. A., MacDougall, C. S., and Scarborough, J. O., Physica C (in press).Google Scholar
27.Wu, C. C. and Mason, T. O., J. Am. Ceram. Soc. 64 (9), 520 (1981).CrossRefGoogle Scholar
28.Dieckmann, R., Witt, C. A., and Mason, T. O., Ber. Bunsenges. Phys. Chem. 87 (6), 495 (1983).CrossRefGoogle Scholar
29.Beyers, R. and Ahn, B. T., Ann. Rev. Mater. Sci. 21, 335 (1991).CrossRefGoogle Scholar
30.Torrance, J. B., Tokura, Y., Nazzal, A. I., Bezinge, A., Huang, T. C., and Parkin, S. S. P., Phys. Rev. B 61 (9), 11271130 (1988).Google Scholar