Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-25T12:44:12.465Z Has data issue: false hasContentIssue false

Chemical solution deposition as a route to narrow-band gap and room-temperature ferromagnetic perovskite [K0.5Na0.5NbO3]1−x[BaNi0.5Nb0.5O3δ]x films

Published online by Cambridge University Press:  06 September 2019

Xuezhen Zhai*
Affiliation:
School of Physics and Electronic Engineering, Zhengzhou University of Light Industry, Henan 450002, China Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of electronics, East China Normal University, Shanghai 200241, China
Shizhuo Wang
Affiliation:
School of Physics and Electronic Engineering, Zhengzhou University of Light Industry, Henan 450002, China
Cui Shang
Affiliation:
School of Physics and Electronic Engineering, Zhengzhou University of Light Industry, Henan 450002, China
Pingxiong Yang
Affiliation:
Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of electronics, East China Normal University, Shanghai 200241, China
*
a)Address all correspondence to this author. e-mail: wanzifsh@163.com
Get access

Abstract

[K0.5Na0.5NbO3]1−x[BaNi0.5Nb0.5O3−δ]x (KNBNNO, 0 ≤ x ≤ 0.3) films have been fabricated on different substrates for the first time, using a modified chemical solution deposition method. The microstructure, optical properties, ferromagnetism, and substrate effects of KNBNNO films were assessed, and we found that BaNi0.5Nb0.5O3−δ (BNNO) content was a key factor in determining the properties of the final products. The lower band gap of KNBNNO is due to the band-to-band transition from hybridized Ni 3d and O 2p to Nb 4d states. Moreover, with increasing x from 0 to 0.3, the magnetism transition process of the samples from diamagnetism to ferromagnetism may originate from the competition between ferromagnetic exchange interactions in Ni2+–VO2−–Ni2+ and superexchange interactions in Ni2+–Ni2+. Notably, absorption behaviors in the visible light wave band for KNBNNO films have been realized, which makes it possible to use KNBNNO films for perovskite solar cell applications.

Type
Article
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Yang, S.Y., Seidel, J., Byrnes, S.J., Shafer, P., Yang, C.H., Rossell, M.D., Yu, P., Chu, Y.H., Scott, J.F., Ager, J.W., Martin, L.W., and Ramesh, R.: Above-bandgap voltages from ferroelectric photovoltaic devices. Nat. Nano 5, 143147 (2010).CrossRefGoogle ScholarPubMed
Zhang, G.H., Wu, H., Li, G.B., Huang, Q.Z., Yang, C.Y., Huang, F.Q., Liao, F.H., and Lin, J.H.: New high T c multiferroics KBiFe2O5 with narrow band gap and promising photovoltaic effect. Sci. Rep. 3, 1265 (2013).CrossRefGoogle Scholar
Choi, T., Lee, S., Choi, Y.J., Kiryukhin, V., and Cheong, S.W.: Switchable ferroelectric diode and photovoltaic effect in BiFeO3. Science 324, 6366 (2009).CrossRefGoogle ScholarPubMed
Wang, F., Grinberg, I., and Rappe, A.M.: Band gap engineering strategy via polarization rotation in perovskite ferroelectrics. Appl. Phys. Lett. 104, 152903 (2014).CrossRefGoogle Scholar
Choi, W.S., Chisholm, M.F., Singh, D.J., Choi, T., and Jellison, G.E.: Wide bandgap tunability in complex transition metal oxides by site-specific substitution. Nat. Commun. 3, 689 (2012).CrossRefGoogle ScholarPubMed
Grinberg, I., West, D.V., Torres, M., Gou, G.Y., Stein, D.M., Wu, L.Y., Chen, G.N., Gallo, E.M., Akbashev, A.R., Davies, P.K., Spanier, J.E., and Rappe, A.M.: Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials. Nature 503, 509 (2013).CrossRefGoogle ScholarPubMed
Zhou, W.L., Deng, H.M., Yang, P.X., and Chu, J.H.: Structure phase transition, narrow band gap, and room-temperature ferromagnetism in [KNbO3]1−x[BaNi1/2Nb1/2O3−δ]x ferroelectrics. Appl. Phys. Lett. 105, 111904 (2014).CrossRefGoogle Scholar
Pithan, C., Shiratori, Y., Dornseiffer, J., Haege, F.H., Magrez, A., and Waser, R.: Microemulsion mediated synthesis of nanocrystalline (KxNa1−x )NbO3 powders. J. Cryst. Growth. 280, 191200 (2005).CrossRefGoogle Scholar
Saito, Y., Takao, H., Tani, T., Nonoyama, T., Takatori, K., Homma, T., Nagaya, T., and Nakamura, M.: Lead-free piezoceramics. Nature 432, 8487 (2004).CrossRefGoogle ScholarPubMed
Li, J.F., Wang, K., Zhu, F.Y., Cheng, L.Q., Yao, F.Z., and Green, D.J.: (K, Na)NbO3-based lead-free piezoceramics: Fundamental aspects, processing technologies and remaining challenges. J. Am. Ceram. Soc. 96, 36773696 (2013).CrossRefGoogle Scholar
Bortolani, F., Campo, A.D., Fernandez, J.F., Clemens, F., and Rubio, M.F.: High strain in (K,Na)NbO3-based lead-free piezoelectric fibers. Chem. Mater. 26, 38383848 (2014).CrossRefGoogle Scholar
Deng, Q.L., Zhang, J.Z., Huang, T., Xu, L.P., Jiang, K., Li, Y.W., Hu, Z.G., and Chu, J.H.: Optoelectronic properties and polar nano-domain behaviour of sol-gel derived K0.5Nb0.5Nb1−x MnxO3−δ nanocrystalline films with enhanced ferroelectricity. J. Mater. Chem. C. 3, 8225 (2015).CrossRefGoogle Scholar
Lee, S.Y., Kim, J.S., Ahn, C.W., Ullah, A., Lee, H.J., and Kim, W.: Influence of piezoelectric property on annealing temperature of Ta-substituted (K0.5Na0.5)NbO3 thin films by chemical solution deposition. Curr. Appl. Phys. 11, S157S160 (2011).Google Scholar
Ye, P., Liu, G.L., He, S.M., Cao, M., Kang, S.S., Chen, Y.X., Yan, S.S., and Mei, L.M.: Effects of oxygen ambient on dielectric and ferroelectric properties of lead free Lix(K0.5Na0.5)(1−x)NbO3 thin films derived from chemical solution deposition. J. Alloys Compd. 554, 400404 (2013).CrossRefGoogle Scholar
Tanaka, K., Kakimoto, K.I., and Ohsato, H.: Morphology and crystallinity of KNbO3-based nano powder fabricated by sol–gel process. J. Eur. Ceram. Soc. 27, 35913595 (2007).CrossRefGoogle Scholar
Kopnin, E.M., Istomin, S.Y., D’yachenko, O.G., Antipovl, E.V., Bordet, P., Capponi, J.J., Chaillout, C., Marezio, M., Brion, S., and Souletie, B.: Synthesis, structure, and resistivity properties of K1−xBaxNbO3 (0.2 ≤ x ≤ 0.5) and K0.5Sr0.5NbO3. Mater. Res. Bull. 30, 13791386 (1995).CrossRefGoogle Scholar
Venkatesh, J., Sherman, V., and Setter, N.: Synthesis and dielectric characterization of potassium niobate tantalate ceramics. J. Am. Ceram. Soc. 88, 33973404 (2005).CrossRefGoogle Scholar
Tanaka, K., Hayashi, H., Kakimoto, K.I., Ohsato, H., and Iijima, T.: Effect of (Na,K)-excess precursor solutions on alkoxy-derived (Na,K)NbO3 powders and thin films. Jpn. J. Appl. Phys. 46, 69646970 (2007).CrossRefGoogle Scholar
Yi, Z.G., Liu, Y., Carpenter, M.A., Schiemer, J., and Withers, R.L.: K0.46Na0.54NbO3 ferroelectric ceramics: Chemical synthesis, electro-mechanical characteristics, local crystal chemistry and elastic anomalies. Dalton Trans. 40, 50665072 (2011).CrossRefGoogle ScholarPubMed
Yu, Q., Li, J.F., Sun, W., Zhou, Z., Xu, Y., Xie, Z.K., Lai, F.P., and Wang, Q.M.: Electrical properties of K0.5Na0.5NbO3 thin films grown on Nb:SrTiO3 single-crystalline substrates with different crystallographic orientations. J. Appl. Phys. 113, 024101 (2013).CrossRefGoogle Scholar
Zhang, Y.J., Zhang, H.G., Yin, J.H., Zhang, H.W., Chen, J.L., Wang, W.Q., and Wu, G.H.: Structural and magnetic properties in Bi1−xRxFeO3 (x = 0–1, R = La, Nd, Sm, Eu, and Tb) polycrystalline ceramics. J. Magn. Magn. Mater. 322, 22512255 (2010).CrossRefGoogle Scholar
Rani, J., Yadav, K.L., and Prakash, S.: Modified structure and electrical properties of BSZT doped KNN hybrid ceramic. Appl. Phys. A. 108, 761764 (2012).CrossRefGoogle Scholar
Ramam, K. and Lopez, M.: Ferroelectric and piezoelectric properties of Ba modified lead zirconium titanate ceramics. J. Phys. D: Appl. Phys. 39, 4466 (2006).CrossRefGoogle Scholar
Tauc, J. and Grigorovici, R.: Optical properties and electronic structure of amorphous germanium. Phy. Status. Solidi. 15, 627637 (1966).CrossRefGoogle Scholar
Su, T.T., Jiang, H., Gong, H., and Zhai, Y.C.: An alternative approach of solid-state reaction to prepare nanocrystalline KNbO3. J. Mater. Sci. 45, 37783783 (2010).CrossRefGoogle Scholar
Jalbout, A.F., Chen, H., and Whittenburg, S.L.: Monte Carlo simulation on the indirect exchange interactions of Co-doped ZnO film. Appl. Phys. Lett. 81, 22172219 (2002).CrossRefGoogle Scholar
Matsukura, F., Ohno, H., Shen, A., and Sugawara, Y.: Transport properties and origin of ferromagnetism in (Ga,Mn)As. Phys. Rev. B. 57, R2037 (1998).CrossRefGoogle Scholar
Coey, J.M.D., Venkatesan, M., and Fitzgerald, C.B.: Donor impurity band exchange in dilute ferromagnetic oxides. Nat. Mater. 4, 173179 (2005).CrossRefGoogle ScholarPubMed
Zhou, W.L., Deng, H.M., Yu, L., Yang, P.X., and Chu, J.H.: Magnetism switching and band-gap narrowing in Ni-doped PbTiO3 thin film. J. Appl. Phys. 117, 194102 (2015).CrossRefGoogle Scholar
Zhai, X.Z., Jia, H.M., Zhang, Y.G., Lei, Y., Wei, J., Gao, Y.H., Chu, J.H., He, W.W., Yin, J.J., and Zheng, Z.: In situ fabrication of Cu2ZnSnS4 nanoflake thin film on both rigid and flexible substrate. CrystEngComm 16, 62446249 (2014).CrossRefGoogle Scholar
Yan, H.R., Deng, H.M., Ding, N.F., He, J., Peng, L., Sun, L., Yang, P.X., and Chu, J.H.: Influence of transition elements doping on structural, optical and magnetic properties of BiFeO3 films fabricated by magnetron sputtering. Mater. Lett. 111, 123125 (2013).CrossRefGoogle Scholar
Zhai, X.Z., Deng, H.M., Zhou, W.L., Yang, P.X., and Chu, J.H.: Strain-induced structural phase transition, ferromagnetic and optical properties of Bi1−xTbxFeO3 thin films. J. Phys. D: Appl. Phys. 48, 385002 (2015).CrossRefGoogle Scholar
He, J., Sun, L., Chen, S.Y., Chen, Y., Yang, P.X., and Chu, J.H.: Composition dependence of structure and optical properties of Cu2ZnSn(S,Se)4 solid solutions an experimental study. J. Alloys Compd. 511, 129132 (2012).CrossRefGoogle Scholar
Su, Y.G., Wang, S.W., Meng, Y., Han, H., and Wang, X.J.: Dual substitutions of single dopant Cr3+ in perovskite NaTaO3: Synthesis, structure, and photocatalytic performance. RSC Adv 2, 1293212939 (2012).CrossRefGoogle Scholar