Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-26T07:56:38.511Z Has data issue: false hasContentIssue false

Composition optimization of p-type skutterudites CeyFexCo4−xSb12 and YbyFexCo4−xSb12

Published online by Cambridge University Press:  18 May 2011

Ruiheng Liu
Affiliation:
CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
Pengfei Qiu
Affiliation:
CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
Xihong Chen*
Affiliation:
CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
Xiangyang Huang
Affiliation:
CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
Lidong Chen
Affiliation:
CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
*
a)Address all correspondence to this author. e-mail: xhchen@mail.sic.ac.cn
Get access

Abstract

To answer the fundamental questions of p-type skutterudites, systematical study on the influence of chemical composition on the electrical transport properties of RyFexCo4−xSb12 (R = Ce and Yb) has been carried out. By adjusting the filling fraction of fillers, the optimized electrical properties are obtained at the specific Fe content. It is found that the hole concentration increases with Fe content. Fe doping can also enhance the effective mass of holes significantly, which is beneficial for improving electrical performance. Because of the limit of electron supply, for trivalent Ce filling system CeyFexCo4−xSb12, the maximum figure of merit (ZT) value is achieved when Fe content is around x = 3, and for divalent Yb filling system YbyFexCo4−xSb12, the maximum ZT value is obtained even at lower Fe content. At high temperature above 700 K, the bipolar diffusion leads to great increase of total thermal conductivity and therefore deteriorates the thermoelectric properties.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Caillat, T., Borshchevsky, A., and Fleurial, J.P.: Properties of single crystalline semiconducting CoSb3. J. Appl. Phys. 80, 4442 (1996).CrossRefGoogle Scholar
2.Morelli, D.T., Caillat, T., Fleurial, J.P., Borshchevsky, A., Vandersande, J., Chen, B., and Uher, C.: Low-temperature transport properties of p-type CoSb3. Phys. Rev. B 51, 9622 (1995).CrossRefGoogle ScholarPubMed
3.Tritt, T.M., Nolas, G.S., Slack, G.A., Ehrlich, A.C., Gillespie, D.J., and Cohn, J.L.: Low-temperature transport properties of the filled and unfilled IrSb3 skutterudite system. J. Appl. Phys. 79, 8412 (1996).CrossRefGoogle Scholar
4.Morelli, D.T. and Meisner, G.P.: Low-temperature properties of the filled skutterudite CeFe4Sb12. J. Appl. Phys. 77, 3777 (1995).CrossRefGoogle Scholar
5.Fleurial, J.P., Borshchevsky, A., Caillat, T., Morelli, D.T., and Meisner, G.P.: High Figure of Merit in Ce-Filled Skutterudites (IEEE, New York, 1996).CrossRefGoogle Scholar
6.Sales, B.C., Mandrus, D., and Williams, R.K.: Filled skutterudite antimonides: A new class of thermoelectric materials. Science 272, 1325 (1996).CrossRefGoogle ScholarPubMed
7.Sales, B.C., Mandrus, D., Chakoumakos, B.C., Keppens, V., and Thompson, J.R.: Filled skutterudite antimonides: Electron crystals and phonon glasses. Phys. Rev. B 56, 15081 (1997).CrossRefGoogle Scholar
8.Nolas, G.S., Kaeser, M., Littleton, R.T., and Tritt, T.M.: Anomalous barium filling fraction and n-type thermoelectric performance of BayCo4Sb12. Appl. Phys. Lett. 77, 1855 (2000).CrossRefGoogle Scholar
9.Chen, L.D., Kawahara, T., Tang, X.F., Goto, T., Hirai, T., Dyck, J.S., Chen, W., and Uher, C.: High figure of merit in Eu-filled CoSb3-based skutterudites. J. Appl. Phys. 90, 1864 (2001).CrossRefGoogle Scholar
10.Lamberton, G.A., Bhattacharya, S., Littleton, R.T., Kaeser, M.A., Tedstrom, R.H., Tritt, T.M., Yang, J., and Nolas, G.S.: High figure of merit in partially filled ytterbium skutterudite materials. Appl. Phys. Lett. 80, 598 (2002).CrossRefGoogle Scholar
11.Shi, X., Zhang, W., Chen, L.D., and Yang, J.: Filling fraction limit for intrinsic voids in crystals: Doping in skutterudites. Phys. Rev. Lett. 95, 185503 (2005).CrossRefGoogle ScholarPubMed
12.Mei, Z.G., Zhang, W., Chen, L.D., and Yang, J.: Filling fraction limits for rare-earth atoms in CoSb3: An ab initio approach. Phys. Rev. B 74, 153202 (2006).CrossRefGoogle Scholar
13.Pei, Y.Z., Bai, S.Q., Zhao, X.Y., Zhang, W., and Chen, L.D.: Thermoelectric properties of EuyCo4Sb12 filled skutterudites. Solid State Sci. 10, 1422 (2008).CrossRefGoogle Scholar
14.Zhang, W., Shi, X., Mei, Z.G., Xu, Y., Chen, L.D., Yang, J., and Meisner, G.P.: Predication of an ultrahigh filling fraction for K in CoSb3. Appl. Phys. Lett. 89, 112105 (2006).CrossRefGoogle Scholar
15.Shi, X., Salvador, J.R., Yang, J., and Wang, H.: Thermoelectric properties of n-type multiple-filled skutterudites. J. Electron. Mater. 38, 930 (2009).CrossRefGoogle Scholar
16.Yang, J., Zhang, W., Bai, S.Q., Mei, Z., and Chen, L.D.: Dual-frequency resonant phonon scattering in BaxRyCo4Sb12 (R=La, Ce, and Sr). Appl. Phys. Lett. 90, 192111 (2007).CrossRefGoogle Scholar
17.Bai, S.Q., Pei, Y.Z., Chen, L.D., Zhang, W.Q., Zhao, X.Y., and Yang, J.: Enhanced thermoelectric performance of dual-element-filled skutterudites BaxCeyCo4Sb12. Acta Mater. 57, 3135 (2009).CrossRefGoogle Scholar
18.Shi, X., Kong, H., Li, C.P., Uher, C., Yang, J., Salvador, J.R., Wang, H., Chen, L., and Zhang, W.: Low thermal conductivity and high thermoelectric figure of merit in n-type BaxYbyCo4Sb12 double-filled skutterudites. Appl. Phys. Lett. 92, 182101 (2008).CrossRefGoogle Scholar
19.Zhao, W.Y., Wei, P., Zhang, Q.J., Dong, C.L., Liu, L.S., and Tang, X.F.: Enhanced thermoelectric performance in barium and indium double-filled skutterudite bulk materials via orbital hybridization induced by indium filler. J. Am. Chem. Soc. 131, 3713 (2009).CrossRefGoogle ScholarPubMed
20.Zhao, X.Y., Shi, X., Chen, L.D., Zhang, W.Q., Bai, S.Q., Pei, Y.Z., Li, X.Y., and Goto, T.: Synthesis of YbyCo4Sb12/Yb2O3 composites and their thermoelectric properties. Appl. Phys. Lett. 89, 092101 (2006).CrossRefGoogle Scholar
21.Li, H., Tang, X.F., Zhang, Q.J., and Uher, C.: High performance InxCeyCo4Sb12 thermoelectric materials with in situ forming nanostructured InSb phase. Appl. Phys. Lett. 94, 102114 (2009).CrossRefGoogle Scholar
22.Xiong, Z., Chen, X., Huang, X., Bai, S., and Chen, L.: High thermoelectric performance of Yb0.26Co4Sb12/yGaSb nanocomposites originating from scattering electrons of low energy. Acta Mater. 58, 3995 (2010).CrossRefGoogle Scholar
23.Tang, X.F., Chen, L.D., Goto, T., and Hirai, T.: Effects of Ce filling fraction and Fe content on the thermoelectric properties of Co-rich CeyFexCo4-xSb12. J. Mater. Res. 16, 837 (2001).CrossRefGoogle Scholar
24.Tang, X.F., Li, H., Zhang, Q.J., Niino, M., and Goto, T.: Synthesis and thermoelectric properties of double-atom-filled skutterudite compounds CamCenFexCo4-xSb12. J. Appl. Phys. 100, 123702 (2006).CrossRefGoogle Scholar
25.Alboni, P.N., Ji, X., He, J., Gothard, N., and Tritt, T.M.: Thermoelectric properties of La0.9CoFe3Sb12-CoSb3 skutterudite nanocomposites. J. Appl. Phys. 103, 113707 (2008).CrossRefGoogle Scholar
26.Berardan, D., Alleno, E., Godart, C., Puyet, M., Lenoir, B., Lackner, R., Bauer, E., Girard, L., and Ravot, D.: Improved thermoelectric properties in double-filled Cey/2Yby/2Fe4-x(Co/Ni)xSb12 skutterudites. J. Appl. Phys. 98, 033710 (2005).CrossRefGoogle Scholar
27.Rogl, G., Grytsiv, A., Bauer, E., Rogl, P., and Zehetbauer, M.: Thermoelectric properties of novel skutterudites with didymium: DDy(Fe1-xCox)4Sb12 and DDy(Fe1-xNix)4Sb12. Intermetallics 18, 57 (2010).CrossRefGoogle Scholar
28.Viennois, R., Girard, L., Koza, M.M., Mutka, H., Ravot, D., Terki, F., Charar, S., and Tedenac, J.C.: Experimental determination of the phonon density of states in filled skutterudites: Evidence for a localized mode of the filling atom. Phys. Chem. Chem. Phys. 7, 1617 (2005).CrossRefGoogle ScholarPubMed
29.Koza, M.M., Johnson, M.R., Viennois, R., Mutka, H., Girard, L., and Ravot, D.: Breakdown of phonon glass paradigm in La- and Ce-filled Fe4Sb12 skutterudites. Nat. Mater. 7, 805 (2008).CrossRefGoogle Scholar
30.Schnelle, W., Leithe-Jasper, A., Schmidt, M., Rosner, H., Borrmann, H., Burkhardt, U., Mydosh, J.A., and Grin, Y.: Itinerant iron magnetism in filled skutterudites CaFe4Sb12 and YbFe4Sb12: Stable divalent state of ytterbium. Phys. Rev. B 72, 020402(R) (2005).CrossRefGoogle Scholar
31.Singh, D.J. and Mazin, I.I.: Calculated thermoelectric properties of La-filled skutterudites. Phys. Rev. B 56, R1650 (1997).CrossRefGoogle Scholar
32.Schnelle, W., Leithe-Jasper, A., Rosner, H., Cardoso-Gil, R., Gumeniuk, R., Trots, D., Mydosh, J.A., and Grin, Y.: Magnetic, thermal, and electronic properties of iron-antimony filled skutterudites MFe4Sb12 (M=Na, K, Ca, Sr, Ba, La, Yb). Phys. Rev. B 77, 094421 (2008).CrossRefGoogle Scholar
33.Dyck, J.S., Chen, W.D., Uher, C., Chen, L., Tang, X.F., and Hirai, T.: Thermoelectric properties of the n-type filled skutterudite Ba0.3Co4Sb12 doped with Ni. J. Appl. Phys. 91, 3698 (2002).CrossRefGoogle Scholar
34.Yang, J., Meisner, G.P., Rawn, C.J., Wang, H., Chakoumakos, B.C., Martin, J., Nolas, G.S., Pedersen, B.L., and Stalick, J.K.: Low temperature transport and structural properties of misch-metal-filled skutterudites. J. Appl. Phys. 102, 083702 (2007).CrossRefGoogle Scholar
35.Nolas, G.S., Sharp, J., and Goldsmid, H.J.: Thermoelectrics: Basic Principles and New Materials Developments (Springer Verlag Berlin Heidelberg, Germany, 2001), pp. 74, 76.CrossRefGoogle Scholar
36.Singh, D.J. and Pickett, W.E.: Skutterudite antimonides: Quasilinear bands and unusual transport. Phys. Rev. B 50, 11235 (1994).CrossRefGoogle ScholarPubMed