Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-11T07:51:40.378Z Has data issue: false hasContentIssue false

Contact fatigue of silicon

Published online by Cambridge University Press:  31 January 2011

Sanjit Bhowmick
Affiliation:
Materials Science and Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8520
Juan José Meléndez-Martínez
Affiliation:
Departamento de Física, Universidad de Extremadura, 06071 Badajoz, Spain
Brian R. Lawn*
Affiliation:
Materials Science and Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8520
*
a)Address all correspondence to this author. e-mail: brian.lawn@nist.gov
Get access

Abstract

Macroscopic cracks in bulk silicon are generally considered to be immune to fatigue. Here, evidence for pronounced fracture-related fatigue damage in cyclic contact loading of (001) monocrystalline silicon with hard spheres of millimeter-scale radius is presented. The periodic indentation field generates ring cracks around the contact, which proliferate with continued cycling. Copious debris in the form of slabs and particulates is ejected from within the crack walls onto the specimen surface. Continued ejection leads ultimately to large-scale surface removal. The fatigue damage progressively degrades the material strength, more rapidly at higher contact load. Implications concerning the function of silicon devices, including microelectro-mechanical systems, will be briefly discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Bradby, J.G., Williams, J.S., Wong-Leung, J., Swain, M.V.Munroe, P.: Mechanical deformation in silicon by micro-indentation. J. Mater. Res. 16, 1500 2001CrossRefGoogle Scholar
2Bradby, J.G., Williams, J.S., Wong-Leung, J., Kucheyev, S.O., Swain, M.V.Munroe, P.: Spherical indentation of compound semiconductors. Philos. Mag. A 82, 1931 2002CrossRefGoogle Scholar
3Zarudi, I., Zhang, L.C.Swain, M.V.: Microstructure evolution in monocrystalline silicon in cyclic microindentations. J. Mater. Res. 18, 758 2003CrossRefGoogle Scholar
4Zarudi, I., Zhang, L.C.Swain, M.V.: Behavior of monocrystalline silicon under cyclic microindentations with a spherical indenter. Appl. Phys. Lett. 82, 1027 2003CrossRefGoogle Scholar
5Zarudi, I., Zhang, L.C.Swain, M.V.: Effect of water on the mechanical response of monocrystalline silicon to repeated microindentation. Key Eng. Mater. 233-236, 609 2003CrossRefGoogle Scholar
6Zarudi, I., Zou, J., McBride, W.Zhang, L.C.: Amorphous structures induced in monocrystalline silicon by mechanical loading. Appl. Phys. Lett. 85, 932 2004CrossRefGoogle Scholar
7Lawn, B.R.: Fracture and deformation in brittle solids: A perspective on the issue of scale. J. Mater. Res. 19, 22 2004CrossRefGoogle Scholar
8Jung, Y-G., Pajares, A., Banerjee, R.Lawn, B.R.: Strength of silicon, sapphire and glass in the subthreshold flaw region. Acta Mater. 52, 3459 2004CrossRefGoogle Scholar
9Cook, R.F.: Strength and sharp contact fracture of silicon. J. Mater. Sci. 41, 841 2006CrossRefGoogle Scholar
10Jaccodine, R.J.: Surface energy of germanium and silicon. J. Electrochem. Soc. 109, C203 1962Google Scholar
11Chen, C.P.Leopold, M.H.: Fracture toughness of silicon. Am. Ceram. Soc. Bull. 59, 469 1980Google Scholar
12Chen, T.J.Knapp, W.J.: The fracture of single-crystal silicon under various environments. J. Am. Ceram. Soc. 63, 225 1980CrossRefGoogle Scholar
13Lawn, B.R., Marshall, D.B.Chantikul, P.: Mechanics of strength degrading flaws in silicon. J. Mater. Sci. 16, 1769 1981CrossRefGoogle Scholar
14Michalske, T.A.Freiman, S.W.: A molecular interpretation of stress corrosion in silica. Nature 295, 511 1981CrossRefGoogle Scholar
15Renuart, E.D., Fitzgerald, A.M., Kenny, T.W.Dauskardt, R.H.: Fatigue crack growth in micromachined single-crystal silicon. J. Mater. Res. 19, 2635 2004CrossRefGoogle Scholar
16Ballarini, R., Mullen, R.L., Yin, Y., Kahn, H., Stemmer, S.Heuer, A.H.: The fracture toughness of polysilicon devices: A first report. J. Mater. Res. 12, 915 1997CrossRefGoogle Scholar
17Kahn, H., Ballarini, R., Mullen, R.L.Heuer, A.H.: Electrostatically actuated failure of microfabricated polysilicon fracture mechanics specimens. Proc. R. Soc. London Ser. A 455, 3807 1999CrossRefGoogle Scholar
18Kahn, H., Tayebi, N., Ballarini, R., Mullen, R.L.Heuer, A.H.: Fracture toughness of polysilicon MEMS devices. Sens. Actuators, A 82, 274 2000CrossRefGoogle Scholar
19Kahn, H., Ballarini, R., Bellante, J.J.Heuer, A.H.: Fatigue failure in polysilicon not due to simple stress corrosion cracking. Science 298, 1215 2002CrossRefGoogle Scholar
20Kahn, H., Ballarini, R.Heuer, A.H.: Dynamic fatigue of silicon. Curr. Opin. Solid State Mater. Sci. 8, 71 2004CrossRefGoogle Scholar
21Muhlstein, C.L., Brown, S.B.Ritchie, R.O.: High-cycle fatigue and durability of polycrystalline silicon thin films in air. Sens. Actuators, A 94, 177 2001CrossRefGoogle Scholar
22Muhlstein, C.L., Stach, E.A.Ritchie, R.O.: A reaction-layer mechanism for the delayed failure of micron-scale polycrystalline silicon structural films subjected to high-cycle fatigue loading. Acta Mater. 50, 3579 2002CrossRefGoogle Scholar
23Shrotriya, P., Allameh, S., Brown, S., Suo, Z.Soboyejo, W.O.: Fatigue damage evolution in silicon films for micromechanical applications. Exp. Mech. 43, 289 2003CrossRefGoogle Scholar
24Alsem, D.A., Pierron, O.N., Stach, E.A., Muhlstein, C.L.Ritchie, R.O.: Mechanisms for fatigue of micron-scale silicon structural films. Adv. Eng. Mater. 9, 15 2007CrossRefGoogle Scholar
25Pierron, O.N.Muhlstein, C.L.: The role of debris-induced cantilever effects in cyclic fatigue of micron-scale silicon films. Fatigue Fract. Eng. Mater. Struct. 30, 57 2007CrossRefGoogle Scholar
26Lawn, B.R.: Hertzian fracture in single crystals with the diamond structure. J. Appl. Phys. 39, 4828 1968CrossRefGoogle Scholar
27Lawn, B.R.: Indentation of ceramics with spheres: A century after Hertz. J. Am. Ceram. Soc. 81, 1977 1998CrossRefGoogle Scholar
28Bhowmick, S., Meléndez-Martínez, J.J.Lawn, B.R.: Bulk silicon is susceptible to fatigue. Appl. Phys. Lett. 91, 201902 2007CrossRefGoogle Scholar
29Chai, H., Lawn, B.R.Wuttiphan, S.: Fracture modes in brittle coatings with large interlayer modulus mismatch. J. Mater. Res. 14, 3805 1999CrossRefGoogle Scholar
30Miranda, P., Pajares, A., Guiberteau, F., Deng, Y.Lawn, B.R.: Designing damage-resistant brittle-coating structures: I. Bilayers. Acta Mater. 51, 4347 2003CrossRefGoogle Scholar
31Howes, V.R.Tolansky, S.: Pressure crack figures on diamond faces: I. The octahedral face. Proc. R. Soc. London Ser. A 230, 287 1955Google Scholar
32Howes, V.R.Tolansky, S.: Pressure crack figures on diamond faces: II. The dodecahedral and cubic faces. Proc. R. Soc. London Ser. A 230, 294 1955Google Scholar
33Johnson, K.L.: Contact Mechanics Cambridge University Press London, UK 1985CrossRefGoogle Scholar
34Frank, F.C.Lawn, B.R.: On the theory of hertzian fracture. Proc. R. Soc. London Ser. A 299, 291 1967Google Scholar
35Kapels, H., Aigner, R.Binder, J.: Fracture strength and fatigue of polysilicon determined by a novel thermal actuator. IEEE Trans. Electron Dev. 47, 1522 2000CrossRefGoogle Scholar
36Sharpe, W.N., Jackson, K.M., Hemker, K.J.Xie, Z.L.: Effect of specimen size on young’s modulus and fracture strength of polysilicon. J. Microelectromech. Syst. 10, 317 2001CrossRefGoogle Scholar
37Bagdahn, N.Sharpe, W.N.: Fatigue of polycrystalline silicon under long-term cyclic loading. Sens. Actuators, A: Phys. 103, 9 2003CrossRefGoogle Scholar
38Williams, J.S., Lawn, B.R.Swain, M.V.: Cone crack closure in brittle solids. Phys. Status Solidi A 2, 7 1970CrossRefGoogle Scholar
39Lathabai, S., Rödel, J.Lawn, B.R.: Cyclic fatigue from frictional degradation at bridging grains in alumina. J. Am. Ceram. Soc. 74, 1340 1991CrossRefGoogle Scholar
40Lawn, B.R., Padture, N.P., Cai, H.Guiberteau, F.: Making ceramics ‘ductile’. Science 263, 1114 1994CrossRefGoogle ScholarPubMed
41Padture, N.P.Lawn, B.R.: Contact fatigue of a silicon carbide with a heterogeneous grain structure. J. Am. Ceram. Soc. 78, 1431 1995CrossRefGoogle Scholar
42Tolansky, S.Howes, V.R.: Induction of ring cracks on diamond surfaces. Proc. Phys. Soc. London Ser. B 70, 521 1957CrossRefGoogle Scholar
43Lawn, B.R.: Partial cone crack formation in a brittle material loaded with a sliding indenter. Proc. R. Soc. London Ser. A 299, 307 1967Google Scholar