Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T20:37:56.752Z Has data issue: false hasContentIssue false

Conventional thermal annealing for a more efficient p-type doping of Al+ implanted 4H-SiC

Published online by Cambridge University Press:  05 July 2012

Roberta Nipoti*
Affiliation:
Consiglio Nazionale delle Ricerche, Istituto di Microelettronica e Microsistemi, Sezione di Bologna (CNR-IMM of Bologna), I-40129 Bologna, Italy
Raffaele Scaburri
Affiliation:
Consiglio Nazionale delle Ricerche, Istituto di Microelettronica e Microsistemi, Sezione di Bologna (CNR-IMM of Bologna), I-40129 Bologna, Italy
Anders Hallén
Affiliation:
KTH Royal Institute of Technology, School of Information and Communication Technology (School of ICT), SE-164 40, Kista-Stockholm, Sweden
Antonella Parisini
Affiliation:
Università di Parma, CNISM - Dipartimento di Fisica, I-43124 Parma, Italy
*
a)Address all correspondence to this author. e-mail: nipoti@bo.imm.cnr.it
Get access

Abstract

The p-type doping of high purity semi-insulating 4H polytype silicon carbide (HPSI 4H-SiC) by aluminum ion (Al+) implantation has been studied in the range of 1 × 1019 to 8 × 1020 /cm3 (0.39 μm implanted thickness) and a conventional thermal annealing of 1950 °C/5 min. Implanted 4H-SiC layers of p-type conductivity and sheet resistance in the range of 1.6 × 104 to 8.9 ×102 Ω, corresponding to a resistivity in the range of 4.7 × 10−1 to 2.7 × 10−2 Ω cm have been obtained. Hall carrier density and mobility data in the temperature range of 140–720 K feature the transition from a valence band to an intraband conduction for increasing implanted Al ion concentration from 1 × 1019 /cm3 to 4 × 1020 /cm3. A 73% electrical activation, 31% compensation and 146 meV ionization level have been obtained using a best-fit solution of the neutrality equation to Hall carrier data for the lowest concentration.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ivanov, I.G., Henry, A., and Janzén, E.: Ionization energies of phosphorus and nitrogen donors and aluminum acceptors in 4H silicon carbide from the donor-acceptor pair emission. Phys. Rev. B 71, 241201(R) (2005).Google Scholar
Capano, M.A., Cooper, J.A. Jr., Melloch, M.R., Saxler, A., and Mitchel, W.C.: Ionization energies and electron mobilities in phosphorus- and nitrogen-implanted 4H-silicon carbide. J. Appl. Phys. 87, 8773 (2000).Google Scholar
Laube, M., Schmid, F., Pensl, G., Wagner, G., Linnarsson, M., and Maier, M.: Electrical activation of high concentrations of N+ and P+ ions implanted into 4H-SiC. J. Appl. Phys. 92, 549 (2002).Google Scholar
Nipoti, R., Nath, A., Qadri, S.B., Tian, Y-L., Albonetti, C., Carnera, A., and Rao, M.V.: High-dose phosphorus-implanted 4H-SiC: Microwave and conventional post-implantation annealing at temperatures ≥1700 °C. J. Electron. Mater. 41, 457 (2012).Google Scholar
Bockstedte, M., Mattausch, A., and Pankratov, O.: Solubility of nitrogen and phosphorus in 4H-SiC: A theoretical study. Appl. Phys. Lett. 85, 58 (2004).Google Scholar
Negoro, Y., Katsumoto, K., Kimoto, T., and Matsunami, H.: Electronic behaviors of high-dose phosphorus-ion-implanted 4H–SiC (0001). J. Appl. Phys. 96, 224 (2004).CrossRefGoogle Scholar
Negoro, Y., Kimoto, T., Matsunami, H., Schmid, F., and Pensl, G.: Electrical activation of high-concentration aluminum implanted in 4H-SiC. J. Appl. Phys. 96, 4916 (2004).CrossRefGoogle Scholar
Sundaresan, S.G., Rao, M.V., Tian, Y-L., Ridgway, M.C., Schreifels, J.A., and Kopanski, J.J.: Ultrahigh-temperature MWA of Al+- and P+-implanted 4H-SiC. J. Appl. Phys. 101, 073708 (2007).Google Scholar
Bluet, J.M., Pernot, J., Camassel, J., Contreras, S., Robert, J.L., Michaud, J.F., and Billon, T.: Activation of aluminum implanted at high doses in 4H–SiC. J. Appl. Phys. 88, 1971 (2000).Google Scholar
Nipoti, R., Nath, A., Rao, M.V., Hallén, A., Carnera, A., and Tian, Y-L.: Microwave annealing of very high dose aluminum-implanted 4H-SiC. Appl. Phys. Express 4, 111301 (2011).Google Scholar
Tian, Y-L.: Microwave technology for rapid thermal processing reaches ultrahigh temperatures. MRS Bull. 35, 181 (2010).Google Scholar
Linnarsson, M.K., Janson, M.S., Zimmermann, U., Svensson, B.G., Persson, P.O.Å., Hultman, L., Wong-Leung, J., Karlsson, S., Schöner, A., Bleichner, H., and Olsson, E.: Solubility limit and precipitate formation in Al-doped 4H-SiC epitaxial material. Appl. Phys. Lett. 79, 2016 (2001).Google Scholar
Nipoti, R., Mancarella, F., Moscatelli, F., Rizzoli, R., Zampolli, S., and Ferri, M.: Carbon-cap for ohmic contacts on ion-implanted 4H–SiC. Electrochem. Solid-State Lett. 13, H432 (2010).Google Scholar
Nipoti, R., Moscatelli, F., Scorzoni, A., Poggi, A., Cardinali, G.C., Lazar, M., Raynaud, C., Planson, D., Locatelli, M-L., and Chante, J-P.: Contact resistivity of Al/Ti ohmic contacts on p-type ion-implanted 4H- and 6H-SiC. in Silicon Carbide 2002-Materials, Processing and Devices, edited by Saddow, S.E., Larkin, D.J., Saks, N.S., and Schoener, A. (Mater. Res. Soc. Symp. Proc. 742, Warrendale, PA, 2003) p. 303.Google Scholar
Chwang, R., Smith, B.J., and Crowell, C.R.: Contact size effects on the van der Pauw method for resistivity and Hall coefficient measurement. Solid-State Electron. 17, 1217 (1974).Google Scholar
Putley, E.H.: The Hall Effect and Semi-Conductor Physics (Dover Publications Inc., New York, 1968).Google Scholar
Schmid, F., Krieger, M., Laube, M., Pensl, G., and Wagner, G.: Hall scattering factor for electron and holes in SiC, in silicon carbide, in Silicon Carbide: Recent Major Advances, Choyke, W.J., Matsunami, H., and Pensl, G., ed. (Springer-Verlag, Berlin-Heidelberg-New York, 2004) p. 517.Google Scholar
Pernot, J., Contreras, S., and Camassel, J.: Electrical transport properties of aluminum-implanted 4H–SiC. J. Appl. Phys. 98, 023706 (2005).CrossRefGoogle Scholar
Koizumi, A., Suda, J., and Kimoto, T.: Temperature and doping dependencies of electrical properties in Al-doped 4H-SiC epitaxial layers. J. Appl.Phys. 106, 013716 (2009).CrossRefGoogle Scholar
Nath, A., Scaburri, R., Rao, M.V., and Nipoti, R.: Simulation of the temperature dependence of Hall carriers in Al doped 4H-SiC. Mat. Sci. Forum 717720, 237 (2012).Google Scholar
Schöner, A., Nordel, N., Rottner, K., Helbig, R., and Pensl, G.: Dependence of the aluminum ionization energy on doping concentration and compensation in 6H-SiC. Inst. Phys. Conf. Ser. 142, 493 (1996).Google Scholar
Choyke, W.J. and Pensl, G.: Physical properties of SiC. MRS Bull. 22, 25 (1997).CrossRefGoogle Scholar