Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-17T02:11:00.855Z Has data issue: false hasContentIssue false

Copper-associated aluminum ionized center [AlO4/Cu++]+ in a γ-irradiated copper (I)-containing silica glass

Published online by Cambridge University Press:  31 January 2011

Radhaballabh Debnath
Affiliation:
Central Glass and Ceramic Research Institute, 196 Raja S.C. Mullick Road, Calcutta-700 032, India
Get access

Abstract

A new type of aluminum ionized center associated with the copper ion [AlO4/Cu++]+ has been observed in a copper(I)-containing silica glass upon γ-irradiation at room temperature. The center, unlike many other previously reported monovalent cation-compensated aluminum ionized hole centers [AlO4/M+]+, where M+ = H+, Li+, Na+, Ag+, etc., behaves more like a simple ionized center rather than an ionized hole center. We argue that complete compensation of the hole on the aluminum ion of the center becomes possible because of the compensating copper ion. This is accomplished by the donation of an electron by the cuprous ion to the neighboring irradiationgenerated [AlO4]0 hole via that oxygen atom of the (AlO4), which is nearest to the cation.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Krajnovich, D.J., Pour, I.K., Tam, A.C., Leung, W.P., and Kulkarni, M.V., SPIE 1848, 544 (1992).Google Scholar
2.Huges, R.C., Phys. Rev. Lett. 30, 133 (1973).Google Scholar
3.Goksu, H.Y., Wieser, A., Stoneham, D., Bailiff, I.K., and Figel, M., Appl. Radiat. Isot. 47, 1369 (1996).Google Scholar
4.Ranjbar, A.H., Charles, M.W., Durrani, S.A., and Randle, K., Rad. Prot. Dosimetry 65, 351 (1996).CrossRefGoogle Scholar
5.Harai, E., Wang, S., and Royce, B.S.H, J. Appl. Phys. 46, 1310 (1975).CrossRefGoogle Scholar
6.Brower, K.L., Lenahan, P.M., and Dressendorfer, P.V., Appl. Phys. Lett. 41, 251 (1982).CrossRefGoogle Scholar
7.Griscom, D.L., J. Non-Cryst. Solids 149, 137 (1992).CrossRefGoogle Scholar
8.Griscom, D.L. and Cook, M., J. Non-Cryst. Solids 182, 119 (1995).CrossRefGoogle Scholar
9.Choudhuri, J. and Debnath, R., J. Phys.: Condens. Matter 6, 3987 (1994).Google Scholar
10.Griffith, J.H.E, Owen, J., and Ward, I.M., Nature 173, 439 (1954).CrossRefGoogle Scholar
11.Lee, S. and Bray, P.J., Phys. Chem. Glasses 3, 37 (1962).Google Scholar
12.Weil, J.A., Radiat. Effect 26, 261 (1975).CrossRefGoogle Scholar
13.Mackey, J.H. Jr, J. Chem. Phys. 39, 74 (1963).CrossRefGoogle Scholar
14.Davis, P.H., Huang, C.Y., and Weil, J.A., J. Phys. Chem. Sol. 39, 897 (1978).CrossRefGoogle Scholar
15.Lell, E., Phys. Chem. Glasses 3, 84 (1962).Google Scholar
16.Lell, E., Kreidl, N.J., and Hensler, J.K., in Progress in Ceramic Science, edited by Burke, J.E. (Pergamon Press, Oxford, United Kingdom, 1986).Google Scholar
17.Debnath, R., Patent, U.S. No. 5 651 804 (29 July 1997) and 08/393936 (22 February 1995).Google Scholar
18.Debnath, R. and Das, S.K., Chem. Phys. Lett. 155, 52 (1989).CrossRefGoogle Scholar
19.Hiraki, I. and Hiroshi, H., J. Non-Cryst. Solids 179, 202 (1994).Google Scholar
20.Brower, K.L., Phys. Rev. B 20, 1799 (1979).CrossRefGoogle Scholar
21.Week, R.A., J. Non-Cryst. Solids 179, 1 (1994).CrossRefGoogle Scholar
22.Griscom, D.L., Cer. Soc. Jpn. 99, 923 (1991).CrossRefGoogle Scholar
23.Skuja, L., Solid State Commun. 84, 613 (1992).Google Scholar
24.Marshal, C.D., Speth, A.J., and Payne, A.S., J. Non-Cryst. Solids 212, 59 (1997).CrossRefGoogle Scholar
25.Sands, R.H., Phys. Rev. 99, 1222 (1955).CrossRefGoogle Scholar
26.Imagawa, H., Phys. Status Solidi 30, 469 (1968).CrossRefGoogle Scholar
27.Debnath, R. and Chaudhuri, J., Chem. Phys. Lett. 217, 357 (1994).CrossRefGoogle Scholar
28.Debnath, R. and Kumar, S., J. Non-Cryst. Solids 23, 271 (1990).CrossRefGoogle Scholar
29.Debnath, R., Choudhuri, A.K., Luthra, J.M., Vaijapurkar, S.G., and Bhatnagar, P.K., J. Lumin. 65, 279 (1995).CrossRefGoogle Scholar
30.Gersman, H.R. and Swalen, J.D., J. Chem. Phys. 36, 3221 (1962).CrossRefGoogle Scholar
31.Maki, A.H. and McGarvey, B.R., J. Chem. Phys. 29, 31 (1958).CrossRefGoogle Scholar
32.Maki, A.H. and McGarvey, B.R., J. Chem. Phys. 29, 35 (1958).CrossRefGoogle Scholar
33.Kivelson, D. and Neiman, R., J. Chem. Phys. 35, 149 (1961).CrossRefGoogle Scholar
34.Tinkham, M., Proc. R. Soc. A 236, 549 (1956).Google Scholar
35.Taylor, P.C., Baugher, J.F., and Kriz, A.M., Chem. Rev. 75, 203 (1975).CrossRefGoogle Scholar
36.Abragam, A. and Pryce, M.H.L, Proc. R. Soc. A 230, 206 (1951).Google Scholar
37.Hartree, R., The Calculation of Atomic Spectra (John Wiley & Sons, New York, 1957).Google Scholar
38.Hathaway, B.J. and Billing, D.E., Coord. Chem. Rev. 5, 143 (1970).CrossRefGoogle Scholar