Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-17T23:08:32.924Z Has data issue: false hasContentIssue false

Crystallization kinetics of Si3N4 in Si–B–C–N polymer-derived ceramics

Published online by Cambridge University Press:  31 January 2011

Amir H. Tavakoli*
Affiliation:
Institute for Materials Science, University of Stuttgart and Max Planck Institute for Metals Research, D-70569 Stuttgart, Germany
Peter Gerstel
Affiliation:
Institute for Materials Science, University of Stuttgart and Max Planck Institute for Metals Research, D-70569 Stuttgart, Germany
Jerzy A. Golczewski
Affiliation:
Institute for Materials Science, University of Stuttgart and Max Planck Institute for Metals Research, D-70569 Stuttgart, Germany
Joachim Bill
Affiliation:
Institute for Materials Science, University of Stuttgart and Max Planck Institute for Metals Research, D-70569 Stuttgart, Germany
*
a)Address all correspondence to this author. e-mail:a.h.tavakoli@mf.mpg.de
Get access

Abstract

To study the crystallization kinetics of β-Si3N4 in Si–B–C–N polymer-derived ceramics, the amorphous ceramics with composition SiC1.6N1.0B0.4 were synthesized and then isothermally annealed at 1700, 1775 and 1850 °C. The integrated intensities of β-Si3N4 x-ray diffraction (XRD) patterns were used to examine the course of crystallization. The average size of the Si3N4 nanocrystallites was analyzed by means of the XRD measurements and energy-filtering transmission electron microscopy. It was realized that the nanocrystallite dimensions change insignificantly within the time period of crystallization; however, they depend significantly on the temperature. Subsequently, the kinetics of the β-Si3N4 crystallization was analyzed. Consequently, large activation energy in the range of 11.5 eV was estimated. Moreover, continuous nucleation and diffusion-controlled growth have been concluded as the main mechanisms of the crystallization process. Further analysis points at the crucial role of the nucleation rate in the crystallization kinetics of β-Si3N4.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Baldus, H.P., Jansen, M., Wagner, O.: New materials in the system Si–(N,C)–B and their characterization. Key Eng. Mater. 89–91, 75 (1994)Google Scholar
2.Riedel, R., Kienzle, A., Dressler, W., Ruwisch, L., Bill, J., Aldinger, F.: A silicoboron carbonitride ceramic stable to 2000 °C. Nature 382, 796 (1996)CrossRefGoogle Scholar
3.Thorne, G., Aldinger, F.: Precursor-Derived Ceramics edited by J. Bill, F. Wakai, and F. Aldingers (Wiley-VCH, Weinheim, Germany 1999)237Google Scholar
4.Ravi Kumar, N.V., Prinz, S., Cai, Y., Zimmerrmann, A., Aldinger, F., Berger, F., Müller, K.: Crystallization and creep behavior of Si–B–C–N ceramics. Acta Mater. 53, 4567 (2005)CrossRefGoogle Scholar
5.Bill, J., Aldinger, F.: Precursor-derived covalent ceramics. Adv. Mater. 7, 775 (1995)CrossRefGoogle Scholar
6.Jalowiecki, A., Bill, J., Aldinger, F.: Interface characterization of nanosized B-doped Si3N4/SiC ceramics. Composites Part A 27, 717 (1996)CrossRefGoogle Scholar
7.Cai, Y., Zimmermann, A., Prinz, S., Zern, A., Phillipp, F., Aldinger, F.: Nucleation phenomena of nano-crystallites in as-pyrolyzed Si–B–C–N ceramics. Scr. Mater. 45, 1301 (2001)CrossRefGoogle Scholar
8.Janakiraman, N., Weinmann, M., Schuhmacher, J., Müller, K., Bill, J., Aldinger, F.: Thermal stability, phase evolution, and crystallization in Si–B–C–N ceramics derived from a polyborosilazane precursor. J. Am. Ceram. Soc. 85, 1807 (2002)CrossRefGoogle Scholar
9.Zern, A., Mayer, J., Janakiraman, N., Weinmann, M., Bill, J., Rühle, M.: Quantitative EFTEM study of precursor-derived Si–B–C–N ceramics. J. Eur. Ceram. Soc. 22, 1621 (2002)CrossRefGoogle Scholar
10.Schiavon, M.A., Soraru, G.D., Yoshida, I.V.P.: Poly(borosilazanes) as precursors of Si–B–C–N glasses: Synthesis and high temperature properties. J. Non-Cryst. Solids 348, 156 (2004)CrossRefGoogle Scholar
11.Bernard, S., Weinmann, M., Gerstel, P., Miele, P., Aldinger, F.: Boron-modified polysilazane as a novel single-source precursor for SiBCN ceramic fibers: Synthesis, melt spinning, curing and ceramic conversion. J. Mater. Chem. 15, 289 (2005)CrossRefGoogle Scholar
12.Janakiraman, N., Zern, A., Weinmann, M., Aldinger, F., Singh, P.: Phase evolution and crystallization in Si–B–C–N ceramics derived from a polyborosilazane precursor: Microstructural characterization. J. Eur. Ceram. Soc. 25, 509 (2005)CrossRefGoogle Scholar
13.Seifert, H.J., Peng, J., Golczewski, J., Aldinger, F.: Phase equilibria of precursor-derived Si–(B–)C–N ceramics. Appl. Organomet. Chem. 15, 794 (2001)CrossRefGoogle Scholar
14.Golczewski, J.A., Aldinger, F.: Phase separation in Si–(B)–C–N polymer-derived ceramics. Int. J. Mater. Res. 97, 114 (2006)CrossRefGoogle Scholar
15.Müller, A., Gerstel, P., Weinmann, M., Bill, J., Aldinger, F.: Correlation of boron content and high temperature stability in Si–B–C–N ceramics. J. Eur. Ceram. Soc. 20, 2655 (2000)CrossRefGoogle Scholar
16.Müller, A., Gerstel, P., Weinmann, M., Bill, J., Aldinger, F.: Correlation of boron content and high temperature stability in Si–B–C–N ceramics II. J. Eur. Ceram. Soc. 21, 2171 (2001)CrossRefGoogle Scholar
17.Tavakoli, A.H., Gerstel, P., Golczewski, J.A., Bill, J.: Effect of boron on the crystallization of amorphous Si–(B–)C–N polymer-derived ceramics. J. Non-Cryst. Solids 355, 2381 (2009)CrossRefGoogle Scholar
18.Schmidt, H.: Si–(B–)C–N ceramics derived from preceramic polymers: Stability and nano-composite formation. Soft Mater. 2–4, 143 (2006)Google Scholar
19.Tavakoli, A.H., Gerstel, P., Golczewski, J.A., Bill, J.: Quantitative x-ray diffraction analysis and modeling of the crystallization process in amorphous Si–B–C–N polymer-derived ceramics. J. Am. Ceram. Soc. 93, 1470 (2010) (DOI: 10.1111/j.1551-2916.2009.03591.x)CrossRefGoogle Scholar
20.Golczewski, J.A., Aldinder, F.: Thermodynamic modeling of amorphous Si–C–N ceramics derived from polymer precursors. J. Non-Cryst. Solids 347, 204 (2004)CrossRefGoogle Scholar
21.Golczewski, J.A.: Thermodynamic analysis of structural transformation induced by annealing of amorphous Si–C–N ceramics derived from polymer precursors. Int. J. Mater. Res. 97, 729 (2006)Google Scholar
22.Golczewski, J.A.: Thermodynamic analysis of isothermal crystallization of amorphous Si–C–N ceramics derived from polymer precursors. J. Ceram. Soc. Jpn. 114, 950 (2006)CrossRefGoogle Scholar
23.Peuckert, M., Vaahs, T., Brück, M.: Ceramics from organometallic polymers. Adv. Mater. 2, 398 (1990)CrossRefGoogle Scholar
24.Scherrer, P.: Estimation of the size and structure of colloidal particles by Rontgen rays, Göttinger. Nachr. Math. Phys. 2, 98 (1918)Google Scholar
25.Avrami, M.: Kinetics of phase change. I: General theory. J. Chem. Phys. 7, 1103 (1939)CrossRefGoogle Scholar
26.Avrami, M.: Kinetics of phase change. II: Transformation–time relations for random distribution of nuclei. J. Chem. Phys. 8, 212 (1940)CrossRefGoogle Scholar
27.Avrami, M.: Kinetics of phase change. III: Granulation, phase change and microstructure. J. Chem. Phys. 9, 177 (1941)CrossRefGoogle Scholar
28.Johnson, W.A., Mehl, R.F.: Reaction kinetics in processes of nucleation and growth. Trans. AIME 135, 416 (1939)Google Scholar
29.Kolmogorov, A.N.: On statistical theory of metal crystallization. Izv. Akad. Nauk SSSR Ser. Mat. 3, 355 (1937)Google Scholar
30.Christian, J.W.: The Theory of Transformations in Metals and Alloys 3rd ed (Pergamon, Oxford, UK 2002)546Google Scholar
31.Fine, M.E.: Introduction to Phase Transformations in Condensed Systems (Macmillan, New York 1964)12Google Scholar
32.Porter, D.A., Easterling, K.E.: Phase Transformations in Metals and Alloys 2nd ed (Chapman and Hall, London, UK 1992)188 191, 266CrossRefGoogle Scholar
33.Kempen, A.T.W., Sommer, F., Mittemeijer, E.J.: Determination and interpretation of isothermal and non-isothermal transformation kinetics; The effective activation energies in terms of nucleation and growth. J. Mater. Sci. 37, 1321 (2002)CrossRefGoogle Scholar
34.Schmidt, H., Borchardt, G., Weber, S., Scherrer, S., Baurmann, H., Müller, A., Bill, J.: Self-diffusion studies of 15N in amorphous Si3BC4.3N2 ceramics with ion implantation and secondary ion mass spectrometry. J. Appl. Phys. 88, 1827 (2000)CrossRefGoogle Scholar
35.Schmidt, H., Borchardt, G., Baurmann, H., Weber, S., Scherrer, S., Müller, A., Bill, J.: Tracer self-diffusion studies in amorphous Si–(B)–C–N ceramics using ion implantation and SIMS. Def. Diff. Forum 194–199, 941 (2001)CrossRefGoogle Scholar
36.Schmidt, H.: Fundamentals of self-diffusion in amorphous Si–(B)–C–N. Diff. Fundamentals 2 59.1 (2005)Google Scholar
37.Schmidt, H., Borchardt, G., Kaïtasov, O., Lesage, B.: Atomic diffusion of boron and other constituents in amorphous Si–B–C–N. J. Non-Cryst. Solids 353, 4801 (2007)CrossRefGoogle Scholar