Skip to main content
    • Aa
    • Aa

Curvature effects in carbon nanomaterials: Exohedral versus endohedral supercapacitors

  • Jingsong Huang, Bobby G. Sumpter, Vincent Meunier (a1), Gleb Yushin (a2), Cristelle Portet and Yury Gogotsi (a3)...

Capacitive energy storage mechanisms in nanoporous carbon supercapacitors hinge on endohedral interactions in carbon materials with macro-, meso-, and micropores that have negative surface curvature. In this article, we show that because of the positive curvature found in zero-dimensional carbon onions or one-dimensional carbon nanotube arrays, exohedral interactions cause the normalized capacitance to increase with decreasing particle size or tube diameter, in sharp contrast to the behavior of nanoporous carbon materials. This finding is in good agreement with the trend of recent experimental data. Our analysis suggests that electrical energy storage can be improved by exploiting the highly curved surfaces of carbon nanotube arrays with diameters on the order of 1 nm.

Corresponding author
b)e-mail: This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to
Hide All
1.Conway B.E. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications (Kluwer Academic/Plenum, New York 1999)
2.US Department of Energy Basic research needs for electrical energy storage: Report of the basic energy sciences workshop on electrical energy storage (
3.The special issue on electrochemical capacitors. Electrochem. Soc. Interf. 17, 31 (2008)
4.Miller J.R., Simon P. Materials science—Electrochemical capacitors for energy management. Science 321, 651 (2008)
5.Burke A. Ultracapacitors: Why, how, and where is the technology. J. Power Sources 91, 37 (2000)
6.Kötz R., Carlen M. Principles and applications of electrochemical capacitors. Electrochim. Acta 45, 2483 (2000)
7.Simon P., Gogotsi Y. Materials for electrochemical capacitors. Nat. Mater. 7, 845 (2008)
8.Pandolfo A.G., Hollenkamp A.F. Carbon properties and their role in supercapacitors. J. Power Sources 157, 11 (2006)
9.Frackowiak E. Carbon materials for supercapacitor application. Phys. Chem. Chem. Phys. 9, 1774 (2007)
10.Tipler P.A. Physics (Worth, New York 1976)768771
11.Shi H. Activated carbons and double layer capacitance. Electrochim. Acta 41, 1633 (1996)
12.Vix-Guterl C., Frackowiak E., Jurewicz K., Friebe M., Parmentier J., Béguin F. Electrochemical energy storage in ordered porous carbon materials. Carbon 43, 1293 (2005)
13.Sevilla M., Alvarez S., Centeno T.A., Fuertes A.B., Stoeckli F. Performance of templated mesoporous carbons in supercapacitors. Electrochim. Acta 52, 3207 (2007)
14.Chmiola J., Yushin G., Gogotsi Y., Portet C., Simon P., Taberna P.L. Anomalous increase in carbon capacitance at pore size less than 1 nanometer. Science 313, 1760 (2006)
15.Huang J., Sumpter B.G., Meunier V. Theoretical model for nanoporous carbon supercapacitors. Angew. Chem. Int. Ed. 47, 520 (2008)
16.Gerischer H. The impact of semiconductors on the concepts of electrochemistry. Electrochim. Acta 35, 1677 (1990)
17.Wang D.W., Li F., Liu M., Lu G.Q., Cheng H.M. 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. Angew. Chem. Int. Ed. 47, 373 (2008)
18.Stoller M.D., Park S.J., Zhu Y.W., An J.H., Ruoff R.S. Graphene-based ultracapacitors. Nano Lett. 8, 3498 (2008)
19.Huang J., Sumpter B.G., Meunier V. A universal model for nanoporous carbon supercapacitors applicable to diverse pore regimes, carbon materials, and electrolytes. Chem. Eur. J. 14, 6614 (2008)
20.Portet C., Yushin G., Gogotsi Y. Electrochemical performance of carbon onions, nanodiamonds, carbon black and multiwalled nanotubes in electrical double layer capacitors. Carbon 45, 2511 (2007)
21.Bushueva E.G., Galkin P.S., Okotrub A.V., Bulusheva L.G., Gavrilov N.N., Kuznetsov V.L., Moiseekov S.I. Double layer supercapacitor properties of onion-like carbon materials. Phys. Status Solidi B 245, 2296 (2008)
22.Lian K., Park S., Gogotsi Y. Pseudocapacitive behavior of carbon nanoparticles modified by phosphomolybdic acid. J. Electrochem. Soc. 156, A921 (2009)
23.Honda Y., Haramoto T., Takeshige M., Shiozaki H., Kitamura T., Yoshikawa K., Ishikawa M. Performance of electric double-layer capacitor with vertically aligned MWCNT sheet electrodes prepared by transfer methodology. J. Electrochem. Soc. 155, A930 (2008)
24.Honda Y., Takeshige M., Shiozaki H., Kitamura T., Yoshikawa K., Chakrabarti S., Suekane O., Pan L.J., Nakayama Y., Yamagata M., Ishikawa M. Vertically aligned double-walled carbon nanotube electrode prepared by transfer methodology for electric double layer capacitor. J. Power Sources 185, 1580 (2008)
25.Kuznetsov V.L., Butenko Y.V., Chuvilin A.L., Romanenko A.I., Okotrub A.V. Electrical resistivity of graphitized ultra-disperse diamond and onion-like carbon. Chem. Phys. Lett. 336, 397 (2001)
26.Osswald S., Yushin G., Mochalin V., Kucheyev S.O., Gogotsi Y. Control of sp 2/sp 3 carbon ratio and surface chemistry of nanodiamond powders by selectrive oxidation in air. J. Am. Chem. Soc. 128, 11635 (2006)
27.Iwasaki T., Maki T., Yokoyama D., Kumagai H., Hashimoto Y., Asari T., Kawarada H. Highly selective growth of vertically aligned double-walled carbon nanotubes by a controlled heating method and their electric double-layer capacitor properties. Phys. Status Solidi RPL 2, 53 (2008)
28.Honda Y., Ono T., Takeshige M., Morihara N., Shiozaki H., Kitamura T., Yoshikawa K., Morita M., Yamagata M., Ishikawa M. Effect of MWCNT bundle structure on electric double-layer capacitor performance. Electrochem. Solid-State Lett. 12, A45 (2009)
29.Zhang H., Cao G.P., Yang Y.S. Electrochemical properties of ultra-long, aligned, carbon nanotube array electrode in organic electrolyte. J. Power Sources 172, 476 (2007)
30.Portet C., Chmiola J., Gogotsi Y., Park S., Lian K. Electrochemical characterizations of carbon nanomaterials by the cavity microelectrode technique. Electrochim. Acta 53, 7675 (2008)
31.Hulicova-Jurcakova D., Li X., Zhu Z.H., de Marco R., Lu G.Q. Graphitic carbon nanofibers synthesized by the chemical vapor deposition (CVD) method and their electrochemical performances in supercapacitors. Energy Fuels 22, 4139 (2008)
32.Korenblit Y., Rose M., Kockrick K., Borchardt L., Kvit A., Kaskel S., Yushin S. High-rate electrochemical capacitorsbased on ordered mesoporous silicon carbide-derived carbon. ACS Nano 4, 1337 (2010)
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 90 *
Loading metrics...

Abstract views

Total abstract views: 278 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 23rd October 2017. This data will be updated every 24 hours.