Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-21T05:14:57.385Z Has data issue: false hasContentIssue false

Direct current electrical degradation of iron-doped titania ceramics

Published online by Cambridge University Press:  31 January 2011

Jianxin Sheng
Affiliation:
Faculty of Engineering, Shinshu University, 500 Wakasato, Nagano 380, Japan
Tatsuo Fukami
Affiliation:
Faculty of Engineering, Shinshu University, 500 Wakasato, Nagano 380, Japan
Junich Karasawa
Affiliation:
Faculty of Engineering, Shinshu University, 500 Wakasato, Nagano 380, Japan
Get access

Extract

An anomalous increase of current was found in Fe-doped titania ceramics subjected to a constant field of 105 V/m. It is suggested that the space charge rises from blockage of O2(g) → O2−(s) ion transfer at the cathode. This leads to an increase of n-conductivity in the cathodic region and p-conductivity in the anodic region according to the specific defect equilibrium. This viewpoint was reinforced by two newly observed phenomena: (i) the I-V plot shows a linear feature at the initial stage, but it gradually becomes a rectifying feature with time; and (ii) an edge-located electrode shows lower current density and faster current saturation compared with a normal electrode.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.McChesney, J. B., Gallagher, P. K., and DiMarcello, F. V., J. Am. Ceram. Soc. 46, 197 (1963).CrossRefGoogle Scholar
2.Benguigui, L., J. Phys. Chem. Solids 34, 576 (1973).CrossRefGoogle Scholar
3.Waser, R., Baiatu, T., and Härdtl, K., J. Am. Ceram. Soc. 73, 1645 (1990).CrossRefGoogle Scholar
4.Waser, R., Baiatu, T., and Härdtl, K., J. Am. Ceram. Soc. 73, 1654 (1990).CrossRefGoogle Scholar
5.Baiatu, T., Waser, R., and Härdtl, K., J. Am. Ceram. Soc. 73, 1663 (1990).CrossRefGoogle Scholar
6.Perlman, S. and McCusker, J., Proc. IEEE 58, 190 (1970).CrossRefGoogle Scholar
7.Holmes, A. J., Gibson, R. A., and Hajto, J., J. Non-Cryst. Solids 164–166, 817 (1993).CrossRefGoogle Scholar
8.Kirkpatrick, E., Muller, K., and Rubins, R., Phys. Rev. A 86, 135 (1964).Google Scholar
9.Muller, K. and Berlinger, W., Phys. Rev. 186, 361 (1969).CrossRefGoogle Scholar
10.Berney, R. and Cowan, D., Phys. Rev. B 23, 37 (1981).CrossRefGoogle Scholar
11.Blanc, J. and Staebler, D., Phys. Rev. B 4, 3548 (1971).CrossRefGoogle Scholar
12.Fukami, T., Kusunoki, M., and Tsuchiya, H., Jpn. J. Appl. Phys. Supplement 26–2, 46 (1987).CrossRefGoogle Scholar
13.Warren, W., Vanheusden, K., Dimos, D., Pike, G., and Tuttle, B., J. Am. Ceram. Soc. 79, 535 (1996).Google Scholar
14.Badian, L., Gubanski, S., and Lewis, T., J. Phys. D: Appl. Phys. 10, 2513 (1977).CrossRefGoogle Scholar
15.Raalte, J., J. Appl. Phys. 36, 297 (1965).Google Scholar
16.Kessler, J. O., Tompkins, B. E., and Blanc, J., Solid-State Electron. 6, 297 (1963).CrossRefGoogle Scholar