Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-12T18:07:04.829Z Has data issue: false hasContentIssue false

Donor passivation in pseudomorphic-high electron mobility transistors due to plasma-incorporated fluorine impurities observed using x-ray photoemission spectroscopy

Published online by Cambridge University Press:  01 May 2006

Hiroyuki Uchiyama*
Affiliation:
Central Research Laboratory, Hitachi Ltd., Kokubunji-shi, Tokyo 185-8601, Japan
Takeshi Kikawa
Affiliation:
Central Research Laboratory, Hitachi Ltd., Kokubunji-shi, Tokyo 185-8601, Japan
Takafumi Taniguchi
Affiliation:
Central Research Laboratory, Hitachi Ltd., Kokubunji-shi, Tokyo 185-8601, Japan
Takashi Shiota
Affiliation:
Central Research Laboratory, Hitachi Ltd., Kokubunji-shi, Tokyo 185-8601, Japan
*
a) Address all correspondence to this author. e-mail: h-uchiya@crl.hitachi.co.jp
Get access

Abstract

To investigate the effect of plasma-incorporated fluorine on Si donors in pseudomorphic-high electron mobility transistors (P-HEMTs), we used x-ray photoemission spectroscopy to analyze three layers near the Si δ-doped layer and the Si δ-doped layer itself, in which we previously found fluorine accumulation after post-thermal annealing following fluorocarbon-based plasma exposure. For this evaluation, we developed controllable and low-speed AlGaAs wet-chemical etching using citric-acid-based wet etchant. We used it to expose one of the layers to be analyzed: one 7.5 nm above the Si δ-doped layer, one 1.5 nm above it, the δ-doped layer itself, and one 1.5 nm below it. We found that the accumulated fluorine localized in the δ-doped layer and reacted with Si donors. This is apparently the main reason for the carrier passivation in the fluorocarbon-based plasma-exposed P-HEMTs.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Uchiyama, H., Taniguchi, T.: Plasma-induced fluorine damage in P-HEMT caused by C2F6/CHF3 RIE plasma. IEICE Electron. Express 1, 46 (2004).CrossRefGoogle Scholar
2.Uchiyama, H., Taniguchi, T., and Kudo, M.: Control of plasma induced fluorine damage in P-HEMT using InSb barrier layer, in Proc. 16th Int. Conf. Indium Phosphide Relat. Mater., 727 (2004).Google Scholar
3.Uchiyama, H., Taniguchi, T., Kudo, M.: Suppression of plasma-induced fluorine damage in P-HEMTs using strained InSb barrier. IEICE Electron. Express 1, 513 (2004).CrossRefGoogle Scholar
4.Uchiyama, H., Taniguchi, T., Kudo, M.: Strained epilayers effectively reduce plasma-induced fluorine damage in P-HEMTs. IEEE Trans. Device Mater. Reliab. 5, 706 (2005).CrossRefGoogle Scholar
5.Wada, J., Matsukura, Y., Ogihara, T., Furukawa, Y., Tanaka, H.: Donor neutralization by fluorine containing plasmas in Si-doped n-type GaAs crystals. Jpn. J. Appl. Phys. 37, 2325 (1998).CrossRefGoogle Scholar
6.Wada, J., Matsukura, Y., Ogihara, T., Ueda, O.: CF4/O2 plasma induced damage in Si-implanted n-type GaAs crystals. J. Appl. Phys. 82, 617 (1997).CrossRefGoogle Scholar
7.Juang, C., Kuhn, K.K., Darling, R.B.: Selective etching of GaAs and Al0.3Ga0.7As with citric acid/ hydrogen peroxide solutions. J. Vac. Sci. Technol. B 8, 1122 (1990).CrossRefGoogle Scholar
8.Grundbacher, R., Adesida, I., Kao, Y.C., Ketterson, A.A.: Single step lithography for double-recessed gate pseudomorphic high electron mobility transistors. J. Vac. Sci. Technol. B 15, 49 (1997).CrossRefGoogle Scholar
9.Kitano, T., Izumi, S., Minami, H., Ishikawa, T., Sato, K., Sonoda, T., Otsubo, M.: Selective wet etching for highly uniform GaAs/Al0.15Ga0.85As heterostructures field effect transistors. J. Vac. Sci. Technol. B 15, 167 (1997).CrossRefGoogle Scholar
10.Uchiyama, H., Ohta, H., Shiota, T., Takubo, C., Tanaka, K., Mochizuki, K.: Fabrication of subtransistor via holes for small and efficient power amplifiers using highly selective GaAs/InGaP wet etching. J. Vac. Sci. Technol. B 24, 664 (2006).CrossRefGoogle Scholar
11.Ahrenkiel, R.K., Kazmerski, L.L., Ireland, P.J., Jamjoum, O., Russell, P.E., Dunlavy, D.: Reduction of surface states on GaAs by the plasma growth of oxyfluorides. J. Vac. Sci. Technol. B 21, 434 (1982).CrossRefGoogle Scholar
12.Wakejima, A., Onda, K., Fujihara, A., Mizuki, E., Kanamori, M.: Fluorine diffusion and accumulation in Si step-doped InAlAs layers. Appl. Phys. Lett. 73, 2459 (1998).CrossRefGoogle Scholar
13.Taguchi, A., Ohno, T., Sasaki, T.: Fluorine atoms in AlAs, GaAs, and InAs: Stable state, diffusion, and carrier passivation. Phys. Rev. B 62, 1821 (2000).CrossRefGoogle Scholar
14.Uchiyama, H., Taniguchi, T., Kikawa, T.: Reduction of plasma-induced fluorine impurities in P-HEMTs using x-ray emission. IEICE Electron. Express 2, 143 (2005).CrossRefGoogle Scholar