Skip to main content Accessibility help

Effect of cooling rate and composition on the microstructure and mechanical properties of (Ni0.92Zr0.08)100−xAlx (0 ≤ x ≤ 4 at.%) ultrafine eutectic composites

  • Anushree Dutta (a1), Parijat P. Jana (a1) and Jayanta Das (a1)


The effect of cooling rate on the microstructure evolution and the mechanical properties of ingots and rods of 2–5 mm diameter of (Ni0.92Zr0.08)100−xAlx (0 ≤ x ≤ 4 at.%) ultrafine eutectic composites have been investigated. The microstructure of the composites is comprised of micrometer size γ-Ni dendrites embedded in a nano/-ultrafine lamellar fcc γ-Ni and Ni5Zr matrix. The evolution of the microstructure at a wide range of cooling rates (10–104 K/s) has been analyzed in respect of volume fraction of the phases, lamellar spacing, and secondary dendritic arm spacing. All these composites exhibit high hardness up to 4.6 GPa and yield strength up to 1.6 GPa with large compressive plasticity up to 22% at room temperature. The effect of cooling rates on the strength and hardness, and the plasticity of the nanolamellar composites with wide range of alloy composition have been correlated.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Elliott, R.: Eutectic solidification. Mater. Sci. Eng. 65, 85 (1984).
2.Park, J.M., Kim, K.B., Kim, W.T., Lee, M.H., Eckert, J., and Kim, D.H.: High strength ultrafine eutectic Fe–Nb–Al composites with enhanced plasticity. Intermetallics 16, 642 (2008).
3.Park, J.M., Kim, T.E., Sohn, S.W., Kim, D.H., Kim, K.B., Kim, W.T., and Eckert, J.: High strength Ni–Zr binary ultrafine eutectic-dendrite composite with large plastic deformability. Appl. Phys. Lett. 93, 031913 (2008).
4.Das, J., Theissmann, R., Löser, W., and Eckert, J.: Effect of Sn on microstructure and mechanical properties of Ti–Fe–(Sn) ultrafine eutectic composites. J. Mater. Res. 25, 943 (2010).
5.Zhang, L.C., Das, J., Lu, H.B., Duhamel, C., Calin, M., and Eckert, J.: High strength Ti–Fe–Sn ultrafine composites with large plasticity. Scr. Mater. 57, 101 (2007).
6.Maity, T., Roy, B., and Das, J.: Mechanism of lamellae deformation and phase rearrangement in ultrafine β-Ti/FeTi eutectic composites. Acta Mater. 97, 170 (2015).
7.Barbier, D., Huang, M.X., and Bouaziz, O.: A novel eutectic Fe–15 wt% Ti alloy with an ultrafine lamellar structure for high temperature applications. Intermetallics 35, 41 (2013).
8.He, G., Eckert, J., Löser, W., and Schultz, L.: Novel Ti-base nanostructure-dendrite composite with enhanced plasticity. Nat. Mater. 2, 33 (2003).
9.Louzguine, D.V., Kato, H., Louzguina, L.V., and Inoue, A.: High-strength binary Ti–Fe bulk alloys with enhanced ductility. J. Mater. Res. 19, 3600 (2004).
10.Eckert, J., Das, J., Pauly, S., and Duhamel, C.: Mechanical properties of bulk metallic glasses and composites. J. Mater. Res. 22, 285 (2007).
11.Pint, B.A., DiStefano, J.R., and Wright, I.G.: Oxidation resistance: One barrier to moving beyond Ni-base superalloys. Mater. Sci. Eng., A 415, 255 (2006).
12.Maity, T. and Das, J.: High strength Ni–Zr–(Al) nanoeutectic composites with large plasticity. Intermetallics 63, 51 (2015).
13.Maity, T., Singh, A., Dutta, A., and Das, J.: Microscopic mechanism on the evolution of plasticity in nanolamellar γ-Ni/Ni5Zr eutectic composites. Mater. Sci. Eng., A 666, 72 (2016).
14.Kim, J.T., Hong, S.H., Park, H.J., Kim, Y.S., Park, G.H., Park, J-Y., Lee, N., Seo, Y., Park, J.M., and Kim, K.B.: Improving the plasticity and strength of Fe–Nb–B ultrafine eutectic composite. Mater. Des. 76, 190 (2015).
15.Kim, J.T., Lee, S.W., Hong, S.H., Park, H.J., Park, J-Y., Lee, N., Seo, Y., Wang, W-M., Park, J.M., and Kim, K.B.: Understanding the relationship between microstructure and mechanical properties of Al–Cu–Si ultrafine eutectic composites. Mater. Des. 92, 1038 (2016).
16.Kim, J.T., Hong, S.H., Park, H.J., Kim, Y.S., Suh, J.Y., Lee, J.K., Park, J.M., Maity, T., Eckert, J., and Kim, K.B.: Deformation mechanisms to ameliorate the mechanical properties of novel TRIP/TWIP Co–Cr–Mo–(Cu) ultrafine eutectic alloys. Sci. Rep. 7, 39959 (2017).
17.Lee, S.W., Kim, J.T., Hong, S.H., Park, H.J., Park, J-Y., Lee, N.S., Seo, Y., Suh, J.Y., Eckert, J., Kim, D.H., Park, J.M., and Kim, K.B.: Micro-to-nano-scale deformation mechanisms of a bimodal ultrafine eutectic composite. Sci. Rep. 4, 6500 (2014).
18.Das, J., Güth, A., Klauß, H.J., Mickel, C., Löser, W., Eckert, J., Roy, S.K., and Schultz, L.: Effect of casting conditions on microstructure and mechanical properties of high-strength Zr73.5Nb9Cu7Ni1Al9.5 in situ composites. Scr. Mater. 49, 1189 (2003).
19.Das, J., Pauly, S., Duhamel, C., Wei, B.C., and Eckert, J.: Microstructure and mechanical properties of slowly cooled Cu47.5Zr47.5Al5. J. Mater. Res. 22, 326 (2007).
20.Das, J., Roy, S.K., Löser, W., Eckert, J., and Schultz, L.: Novel in situ nanostructure-dendrite composites in Zr-base multicomponent alloy system. Mater. Manuf. Processes 19, 423 (2004).
21.Löser, W., Das, J., Güth, A., Klauß, H-J., Mickel, C., Kühn, U., Eckert, J., Roy, S., and Schultz, L.: Effect of casting conditions on dendrite-amorphous/nanocrystalline Zr–Nb–Cu–Ni–Al in situ composites. Intermetallics 12, 1153 (2004).
22.Chadwick, G.A.: Yield poixt analyses in eutectic alloys. Acta Metall. 24, 1137 (1976).
23.Ghosh, G.: Thermodynamics and kinetics of stable and metastable phases in the Ni–Zr system. J. Mater. Res. 9, 598 (1994).
24.Miura, S., Unno, H., Yamazaki, T., Takizawa, S., and Mohri, T.: Reinvestigation of Ni-solid solution/liquid equilibria in Ni–Al binary and Ni–Al–Zr ternary systems. J. Phase Equilib. 22, 457 (2001).
25.Luo, Y.R.: Comprehensive Handbook of Chemical Bond Energies, 1st ed. (CRC Press, Taylor & Francis Group, Florida, 2007); pp. 903906.
26.Bouchard, D. and Kirkaldy, J.S.: Prediction of dendrite arm spacings in unsteady- and steady-state heat flow of unidirectionally solidified binary alloys. Metall. Mater. Trans. B 28, 651 (1997).
27.Osorio, W.R., Goulart, P.R., Santos, G.A., Neto, C.M., and Garcia, A.: Effect of dendritic arm spacing on mechanical properties and corrosion resistance of Al 9 wt% Si and Zn 27 wt% Al alloys. Metall. Mater. Trans. A 37, 2525 (2006).
28.Kurz, W. and Fisher, D.J.: Fundamental of Solidification, 3rd ed. (Trans Tech Publications, Switzerland, 1989); pp. 108111.
29.Jackson, K.A. and Hunt, J.D.: Lamellar and rod eutectic growth. Trans. Metall. Soc. AIME 236, 1129 (1966).
30.Srivastava, R.M., Eckert, J., Löser, W., Dhindaw, B.K., and Schultz, L.: Cooling rate evaluation for bulk amorphous alloys from eutectic microstructures in casting processes. Mater. Trans. 43, 1670 (2002).
31.Caram, R. and Milenkovic, S.: Microstructure of Ni–Ni3Si eutectic alloy produced by directional solidification. J. Cryst. Growth 198–199, 844 (1999).
32.Kaya, H., Boyuk, U., Cadirli, E., and Marasli, N.: Unidirectional solidification of aluminium–nickel eutectic alloy. Met. Mater. 48, 291 (2010).
33.Stull, D.R. and Sinke, G.C.: Thermodynamic properties of the elements. R.F. Gould (Ed.) In Advances in Chemistry (American Chemical Society, Washington, DC, 1956); pp. 37225.
34.Gaskell, D.R.: Introduction to the Thermodynamics of Materials, 4th ed. (Taylor & Francis Group, New York, 2003); pp. 705706.
35.Lee, H.G.: Materials Thermodynamics with Emphasis on Chemical Approach (World Scientific Publishing Co., Pte., Ltd., Singapore, Malaysia, 2012); p. 433.
36.Porter, D.A., Easterling, K.E., and Sherif, M.Y.: Phase Transformation in Metals and Alloys, 3rd ed. (CRC Press, Taylor & Francis Group, Florida, 2009); pp. 212220.
37.Zhou, S.H., Wang, Y., Chen, L-Q., Liu, Z-K., and Napolitano, R.E.: Solution-based thermodynamic modelling of the Ni–Al–Mo system using first-principles calculations. Calphad 46, 124 (2014).
38.Bratberg, J., Mao, H., Kjellqvist, L., Engström, A., Mason, P., and Chen, Q.: The development and validation of a new thermodynamic database for Ni-based alloys. Superalloys 2012, 803 (2012).
39.Callister, W.D. and Rethwisch, D.G. Jr.: Materials Science and Engineering: An Introduction, 2nd ed. (Wiley India Pvt., Ltd., New Delhi, India, 2014).
40.Glezer, A.M., Kozlov, E.V., Koneva, N.A., Popova, N.A., and Kurzina, I.A.: Plastic Deformation of Nanostructured Materials (CRC Press, Taylor & Francis Group, Boca Raton, Florida, 2017); p. 83.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed