Hostname: page-component-848d4c4894-p2v8j Total loading time: 0 Render date: 2024-06-08T12:06:02.389Z Has data issue: false hasContentIssue false

Effect of interface design on high-temperature failure of laminated composites

Published online by Cambridge University Press:  31 January 2011

Z. Chen
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611
J. J. Mecholsky Jr.
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611
S. Hu
Affiliation:
NRC Associate, Air Force Materials, Directorate, Wright-Patterson Air Force Base, Ohio 45433
Get access

Abstract

The fracture strength and toughness of alumina can be increased by lamination with strategically placed nickel layers and with a modified Ni/Al2O3 interface through tape casting. In order to examine the potential of this type of laminated composite in high temperature applications, the laminates were tested at elevated temperatures. This paper describes how a modified tortuous interface, instead of a smooth interface, increases the creep resistance of the laminates. Interface modification can control high temperature laminate behavior and is critical to successful composite design.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Budiansky, B., Amazigo, J.C., and Evans, A. G., J. Mech. Phys. Solid 36 (2), 167187 (1988).CrossRefGoogle Scholar
2.Budiansky, B., Hutchison, J.W., and Evans, A. G., J. Mech. Phys. Solid 34 (2), 167189 (1986).CrossRefGoogle Scholar
3.Aghajanian, M. K., Macmillan, N. H., Kennedy, C. R., Luszcz, S. J., and Roy, R., Mater. Sci. 24, 658670 (1989).CrossRefGoogle Scholar
4.Chermant, J. L. and Osterstock, F., J. Mater. Sci. 11, 19391951 (1976).CrossRefGoogle Scholar
5.Evans, A. G., J. Am. Ceram. Soc. 73 (2), 187206 (1990).CrossRefGoogle Scholar
6.Bannister, M. and Ashby, M. F., Acta Metall. 39 (11), 25752582 (1989).CrossRefGoogle Scholar
7.Cao, H. C. and Evans, A. G., Acta Metall. 37 (11), 29692977 (1989).CrossRefGoogle Scholar
8.Evans, A. G. and Ruhle, M., Ceramic Containing Systems, edited by Evans, A. G. (Noyes Publications, Park Ridge, NJ, 1986).Google Scholar
9.Cao, H. C., Thousless, M. D., and Evans, A. G., Acta Metall. 36 (8), 20372046 (1988).CrossRefGoogle Scholar
10.Chen, Z. and Mecholsky, J.J., J. Am. Ceram. Soc. 76 (5), 12581264 (1993).CrossRefGoogle Scholar
11.Chen, Z. and Mecholsky, J. J., J. Mater. Res. 8, 23622369 (1993).CrossRefGoogle Scholar
12.Chen, Z. and Mecholsky, J. J., J. Mater. Sci. 28, 63656370 (1993).CrossRefGoogle Scholar
13.Ashby, M. F., Blunt, F. J., and Bannister, M., Acta Metall. 37 (7), 18471859 (1989).CrossRefGoogle Scholar
14.Sigl, L. S., Mataga, P., Dalgleish, B. J., McMeeking, R. M., and Evans, A. G., Acta Metall. 36 (3), 517522 (1988).Google Scholar
15.Hertzberg, R. H., Deformation and Fracture Mechanics of Engineering Materials, 3rd ed. (John Wiley / Sons, New York, 1989).Google Scholar
16.Hollenberg, G. W., Terwilliger, G. R., and Gordon, R. S., J. Am. Ceram. Soc. 54 (4), 196199 (1971).CrossRefGoogle Scholar
17.Chen, C. F. and Chuang, T. J., J. Am. Ceram. Soc. 73 (8), 23662373 (1990).CrossRefGoogle Scholar
18.Ashby, M. F., in Proc. 3rd Int. Conf. on Strength of Metals and Alloys, Cambridge, England (1973), Vol. 2.Google Scholar
19.Hu, S., Bark, J. S., and Nairn, J.A., Composites Sci. Technol. 47, 321329 (1993).CrossRefGoogle Scholar
20.Raj, R. and Ashby, M. F., Metall. Trans. 2, 1113 (1971).CrossRefGoogle Scholar
21.Hehn, L., Chen, Z., Mecholsky, J.J., and Hubbard, C. R., J. Mater. Sci. 30, 12771282 (1995).CrossRefGoogle Scholar