Skip to main content Accessibility help
×
×
Home

Effect of particle size distribution on strength of precipitation-hardened alloys

  • A.J. Kulkarni (a1), K. Krishnamurthy (a1), S.P. Deshmukh (a2) and R.S. Mishra (a2)

Abstract

Aging of precipitation hardened alloys results in particle coarsening, which in turn affects the strength. In this study, the effect of particle size distribution on the strength of precipitation-hardened alloys was considered. To better represent real alloys, the particle radii were distributed using the Wagner and Lifshitz and Slyozov (WLS) particle size distribution theory. The dislocation motion was simulated for a range of mean radii and the critical resolved shear stress (CRSS) was calculated in each case. Results were also obtained by simulating the dislocation motion through the same system but with the glide plane populated by equal strength particles, which represent mean radii for each of the aging times. The CRSS value with the WLS particle distribution tends to decrease for lower radii than it does for the mean radius approach. The general trend of the simulation results compares well with the analytical values obtained using the equation for particle shearing and the Orowan equation.

Copyright

Corresponding author

a)Address all correspondence to this author.e-mail: rsmishra@umr.edu

References

Hide All
1.Nembach, E.: Particle Strengthening of Metals and Alloys, 1st ed. (John Wiley and Sons, New York, 1996)
2.Olson, G.B.: Computational design of hierarchically structured materials, Science 277, 1237 (1997).
3.Kulkarni, A.J., Krishnamurthy, K., Deshmukh, S.P. andMishra, R.S.: Microstructural optimization of alloys using a genetic algorithm. Mater. Sci. Eng. A 372,213 (2004).
4.Kocks, U.F.: A statistical theory of flow stress and work hardening. Philos. Mag. 13, 541 (1962).
5.Foreman, A.J.E. andMakin, M.J.: Dislocation movement through random array of obstacle, Philos Mag. 14, 911 (1966).
6.Foreman, A.J.E. andMakin, M.J.: Dislocation movement through random array of obstacle. Can. J. Phys. 45, 511 (1967).
7.Klahn, J.W. Morris Jr.and D.H.: Thermally activated dislocation glide through a random array of point obstacles: computer simulation. J. Appl. Phys. 45, 2027 (1974).
8.Klahn, J.W. Morris Jr.and D.H.: Statistics of the thermally activated glide of a dislocation through a random array of point obstacle. J. Appl. Phys. 44, 4882 (1973).
9.Hanson, K., Morris, J.W. and Jr., : Limiting configuration in dislocation glide through a random array of point obstacles. J. Appl. Phys. 46, 983 (1975).
10.Schwarz, R.B. andLabusch, R.: Dynamic simulation of solution hardening. J. Appl. Phys. 49, 5174 (1978).
11.Ronnpagel, D., Streit, Th. andPretorius, Th.: Including thermal activation in simulation calculation of dislocation glide. Phys. Status Solidi 135, 445 (1993).
12.Zhu, A.W., Starke, E.A. and Jr., : Strengthening effect of unshearable particles of finite size: A computer experimental study. Acta Mater 47, 3263 (1999).
13.Zhu, A.W., Csontos, A., Starke, E.A. and Jr., : Computer experiment on superposition of strengthening effects of different particles. Acta Mater 47, 1713 (1999).
14.Mohles, V., Ronnpagel, D. andNembach, E.: Simulation of dislocation in precipitation hardened materials. Comput. Mater. Sci. 16, 144 (1999).
15.Mohles, V. andNembach, E.: The peak and overaged states of particle strengthened materials: Computer simulations. Acta Mater. 49, 2405 (2001).
16.Mohles, V. andFruhstorfer, B.: Computer simulation of orowan process controlled dislocation glide in particle arrangement of various randomness. Acta Mater. 50, 2503 (2002).
17.Takahashi, A., Soneda, N., and Yagawa, G.: In Material Modeling-Atomistic Level, edited by Mang, H.A., Rammerstorfer, F.G., and Eberhardsteiner, J. (Fifth World Congress on Computational Mechanics, Vienna, Austria, 2002).
18.Ostwald, W.: Periodische Erscheinungen bei der auflosung des chroms in sauren. Zeistschr. Phys. Chem. 34, 495 (1900).
19.Wagner, C.: Theorie der Alterung von Niederschlagen durch Umlosen (Ostwald-Reifung). Z. Elektrochem. 65, 581 (1961).
20.Lifshitz, I.M. andSlyozov, V.V.: The kinetics of precipitation from supersaturated solid solutions. J. Phys. Chem. Solids 19 35 (1961).
21.Ratke, L. andVoorhees, P.W.Growth and Coarsening: Ostwald Ripening in Material Processing, 1st ed. (Springer-Verlag, Berlin, Germany, 2002)
22.Porter, D. andEasterling, K.: Phase Transformations in Metals and Alloys, 1st ed. (T.J. Press (Padstow) Ltd., Cornwall, U.K., 1981)
23.Martin, J.W.Precipitation Hardening, 1st ed. (Pergamom Press Ltd., Oxford, U.K., 1968)
24.Russ, J.C. andDehoff, R.T.: Practical Stereology, 2nd ed. (Kluwer Academic/Plenum Publishers, New York, 2000)
25.Kendig, K.L. andMiracle, D.B.: Strengthening Mechanisms of an Al-Mg-Sc-Zr Alloy, Acta Mater 50, 4165 (2002).
26.Friedel, J., Dislocations, 1st ed. (Addison-Wesley, Reading, Massachusetts, 1964)
27.Hirth, J.P. andLothe, J.: Theory of Dislocations, 2nd ed. (John Wiley and Sons, New York, 1982)
28.Nabarro, F.R.N.Theory of Crystal Dislocations (Oxford University Press, London, U.K., 1967).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed