Skip to main content
×
×
Home

The effect of radio frequency power on the structural and optical properties of a-C:H films prepared by PECVD

  • Yequan Xiao (a1), Xinyu Tan (a2), Lihua Jiang (a2), Ting Xiao (a2), Peng Xiang (a2) and Wensheng Yan (a3)...
Abstract
Abstract

Hydrogenated amorphous carbon (a-C:H) films with a designed buffer layer of amorphous hydrogenated silicon carbide on the substrates were fabricated by plasma enhanced chemical vapor deposition (PECVD). The effect of radio frequency (RF) power on the structural and optical properties of a-C:H films was investigated. The ratios of sp 3 to sp 2 of carbon atoms and hydrogen contents in the RF power range of 75–175 W are determined and a similar trend as a function of power. The increase of sp 3 to sp 2 ratio leads to the increase of transmittance and optical gap of a-C:H films. a-C:H film under an RF power of 175 W possesses high transmissive ability (>80%) in the visible wave length, even the highest transmittance value of about 94.2% is achieved at the wave length 550 nm. These results show the optimal a-C:H films which are promising for the applications in the area of solar cells acting a window layer and antireflection layer.

Copyright
Corresponding author
a) Address all correspondence to these authors. e-mail: husttanxin@tsinghua.edu.cn
b) e-mail: jlihua107@163.com
Footnotes
Hide All

Contributing Editor: Mauricio Terrones

Footnotes
References
Hide All
1. Robertson J.: Diamond-like amorphous carbon. Mater. Sci. Eng., R 37(4), 129 (2002).
2. Chuang F., Sun C., Cheng H., Huang C., and Lin I.: Enhancement of electron emission efficiency of Mo tips by diamond like carbon coatings. Appl. Phys. Lett. 68(12), 1666 (1996).
3. Aroutiounian V., Martirosyan K., and Soukiassian P.: Low reflectance of diamond-like carbon/porous silicon double layer antireflection coating for silicon solar cells. J. Phys. D: Appl. Phys. 37(19), L25 (2004).
4. Pearce G., Marks N., McKenzie D., and Bilek M.: Molecular dynamics simulation of the thermal spike in amorphous carbon thin films. Diamond Relat. Mater. 14(3), 921 (2005).
5. Robertson J.: Ultrathin carbon coatings for magnetic storage technology. Thin Solid Films 383(1), 81 (2001).
6. Goglia P.R., Berkowitz J., Hoehn J., Xidis A., and Stover L.: Diamond-like carbon applications in high density hard disc recording heads. Diamond Relat. Mater. 10(2), 271 (2001).
7. Hauert R.: A review of modified DLC coatings for biological applications. Diamond Relat. Mater. 12(3), 583 (2003).
8. Ferrari A.C.: Diamond-like carbon for magnetic storage disks. Surf. Coat. Technol. 180, 190 (2004).
9. Singh S., Pandey M., Chand N., Biswas A., Bhattacharya D., Dash S., Tyagi A., Dey R., Kulkarni S., and Patil D.: Optical and mechanical properties of diamond like carbon films deposited by microwave ECR plasma CVD. Bull. Mater. Sci. 31(5), 813 (2008).
10. Allon-Alaluf M., Appelbaum J., Maharizi M., Seidman A., and Croitoru N.: The influence of diamond-like carbon films on the properties of silicon solar cells. Thin Solid Films 303(1), 273 (1997).
11. Lee C.H. and Lim K.S.: Carrier transport through boron-doped amorphous diamond-like carbon p layer of amorphous silicon based p–i–n solar cells. Appl. Phys. Lett. 75(4), 569 (1999).
12. Hattori Y., Kruangam D., Toyama T., Okamoto H., and Hamakawa Y.: Highly conductive p-type microcrystalline SiC:H prepared by ECR plasma CVD. Appl. Surf. Sci. 33, 1276 (1988).
13. Hamakawa Y., Toyama T., and Okamoto H.: Blue light emission from a-C:H by thin film electroluminescence structure cell. J. Non-Cryst. Solids 115(1), 180 (1989).
14. Shim J.Y., Chi E.J., Baik H.K., and Lee S.M.: Structural, optical, and field emission properties of hydrogenated amorphous carbon films grown by helical resonator plasma enhanced chemical vapor deposition. Jpn. J. Appl. Phys. 37(2R), 440 (1998).
15. Lu Y., Huang S., Huan C., and Luo X.: Amorphous hydrogenated carbon synthesized by pulsed laser deposition from cyclohexane. Appl. Phys. A 68(6), 647 (1999).
16. Weissmantel C., Bewilogua K., Dietrich D., Erler H-J., Hinneberg H-J., Klose S., Nowick W., and Reisse G.: Structure and properties of quasi-amorphous films prepared by ion beam techniques. Thin Solid Films 72(1), 19 (1980).
17. Park Y.S., Cho H.J., and Hong B.: Characteristics of conductive amorphous carbon (aC) films prepared by using the magnetron sputtering method. J. Korean Phys. Soc. 51(3), 1119 (2007).
18. Tay B., Zhao Z., and Chua D.: Review of metal oxide films deposited by filtered cathodic vacuum arc technique. Mater. Sci. Eng., R 52(1), 1 (2006).
19. Dwivedi N., Kumar S., Malik H., Rauthan C., and Panwar O.: Correlation of sp 3 and sp 2 fraction of carbon with electrical, optical and nano-mechanical properties of argon-diluted diamond-like carbon films. Appl. Surf. Sci. 257(15), 6804 (2011).
20. Oliveira É.C., Cruz S.A., and Aguiar P.H.: Effect of PECVD deposition parameters on the DLC/PLC composition of a-C:H thin films. J. Braz. Chem. Soc. 23(9), 1657 (2012).
21. Wu J., Wang Y-L., and Kuo C-T.: Plasma treatment effects on hydrogenated amorphous carbon films prepared by plasma-enhanced chemical vapor deposition. J. Phys. Chem. Solids 69(2), 505 (2008).
22. Ahmad I., Roy S., Rahman M.A., Okpalugo T., Maguire P., and Mc Laughlin J.: Substrate effects on the microstructure of hydrogenated amorphous carbon films. Curr. Appl. Phys. 9(5), 937 (2009).
23. Schwarz C., Heeg J., Rosenberg M., and Wienecke M.: Investigation on wear and adhesion of graded Si/SiC/DLC coatings deposited by plasma-enhanced-CVD. Diamond Relat. Mater. 17(7), 1685 (2008).
24. Cemin F., Bim L., Menezes C., Aguzzoli C., da Costa M.M., Baumvol I., Alvarez F., and Figueroa C.: On the hydrogenated silicon carbide (SiC x :H) interlayer properties prompting adhesion of hydrogenated amorphous carbon (a-C:H) deposited on steel. Vacuum 109, 180 (2014).
25. Glaude A.S., Thomas L., Tomasella E., Badie J., and Berjoan R.: Selective effect of ion/surface interaction in low frequency PACVD of SiC:H films: Part B. Microstructural study. Surf. Coat. Technol. 201(1), 174 (2006).
26. Nass K., Radi P., Leite D., Massi M., da Silva Sobrinho A., Dutra R., Vieira L., and Reis D.: Tribomechanical and structural properties of a-SiC:H films deposited using liquid precursors on titanium alloy. Surf. Coat. Technol. 284, 240 (2015).
27. Soum-Glaude A., Thomas L., Tomasella E., Badie J., and Berjoan R.: Selective effect of ion/surface interaction in low frequency PACVD of SiC:H films: Part A. Gas phase considerations. Surf. Coat. Technol. 200(1), 855 (2005).
28. Dischler B., Bubenzer A., and Koidl P.: Bonding in hydrogenated hard carbon studied by optical spectroscopy. Solid State Commun. 48(2), 105 (1983).
29. Couderc P. and Catherine Y.: Structure and physical properties of plasma-grown amorphous hydrogenated carbon films. Thin Solid Films 146(1), 93 (1987).
30. Akkerman Z., Efstathiadis H., and Smith F.: Thermal stability of diamond like carbon films. J. Appl. Phys. 80(5), 3068 (1996).
31. Basa D. and Smith F.: Annealing and crystallization processes in a hydrogenated amorphous SiC alloy film. Thin Solid Films 192(1), 121 (1990).
32. Lifshitz Y., Kasi S., Rabalais J., and Eckstein W.: Subplantation model for film growth from hyperthermal species. Phys. Rev. B: Condens. Matter Mater. Phys. 41(15), 10468 (1990).
33. Robertson J.: The deposition mechanism of diamond-like a-C and a-C:H. Diamond Relat. Mater. 3(4–6), 361 (1994).
34. Rhallabi A. and Catherine Y.: Computer simulation of a carbon-deposition plasma in CH4 . IEEE Trans. Plasma Sci. 19(2), 270 (1991).
35. Mantzaris N.V., Gogolides E., Boudouvis A.G., Rhallabi A., and Turban G.: Surface and plasma simulation of deposition processes: CH4 plasmas for the growth of diamond like carbon. J. Appl. Phys. 79(7), 3718 (1996).
36. Mutsukura N. and Saitoh K.: Temperature dependence of a-C:H film deposition in a CH4 radio frequency plasma. J. Vac. Sci. Technol., A 14(4), 2666 (1996).
37. Robertson J.: Properties of diamond-like carbon. Surf. Coat. Technol. 50(3), 185 (1992).
38. Liu X., Yamaguchi R., Umehara N., Deng X., Kousaka H., and Murashima M.: Clarification of high wear resistance mechanism of ta-CN x coating under poly alpha-olefin (PAO) lubrication. Tribol. Int. 105, 193 (2017).
39. Schwan J., Ulrich S., Batori V., Ehrhardt H., and Silva S.: Raman spectroscopy on amorphous carbon films. J. Appl. Phys. 80(1), 440 (1996).
40. Ferrari A. and Robertson J.: Resonant Raman spectroscopy of disordered, amorphous, and diamond like carbon. Phys. Rev. B: Condens. Matter Mater. Phys. 64(7), 075414 (2001).
41. Colthup N., Daly L., and Wiberley S.: Introduction to Infrared and Raman Spectroscopy, Vol. 23 (Academic Press, New York, 1975).
42. Nistor L.C., Van Landuyt J., Ralchenko V., Kononenko T., Obraztsova E.D., and Strelnitsky V.: Direct observation of laser-induced crystallization of a-C:H films. Appl. Phys. A 58(2), 137 (1994).
43. Cappelli E., Orlando S., Mattei G., Zoffoli S., and Ascarelli P.: SEM and Raman investigation of RF plasma assisted pulsed laser deposited carbon films. Appl. Surf. Sci. 197, 452 (2002).
44. Paulmier T., Bell J.M., and Fredericks P.M.: Deposition of nano-crystalline graphite films by cathodic plasma electrolysis. Thin Solid Films 515(5), 2926 (2007).
45. Sui J., Gao Z., Cai W., and Zhang Z.: Corrosion behavior of NiTi alloys coated with diamond-like carbon (DLC) fabricated by plasma immersion ion implantation and deposition. Mater. Sci. Eng., A 452, 518 (2007).
46. Shin J-K., Lee C.S., Lee K-R., and Eun K.Y.: Effect of residual stress on the Raman-spectrum analysis of tetrahedral amorphous carbon films. Appl. Phys. Lett. 78(5), 631 (2001).
47. Ferrari A., Rodil S., and Robertson J.: Interpretation of infrared and Raman spectra of amorphous carbon nitrides. Phys. Rev. B: Condens. Matter Mater. Phys. 67(15), 155306 (2003).
48. Al-Jishi R. and Dresselhaus G.: Lattice-dynamical model for graphite. Phys. Rev. B: Condens. Matter Mater. Phys. 26(8), 4514 (1982).
49. Dillon R., Woollam J.A., and Katkanant V.: Use of Raman scattering to investigate disorder and crystallite formation in as-deposited and annealed carbon films. Phys. Rev. B: Condens. Matter Mater. Phys. 29(6), 3482 (1984).
50. Cho N., Veirs D., Ager Iii J., Rubin M., Hopper C., and Bogy D.: Effects of substrate temperature on chemical structure of amorphous carbon films. J. Appl. Phys. 71(5), 2243 (1992).
51. Herak T., McLeod R., Kao K., Card H., Watanabe H., Katoh K., Yasui M., and Shibata Y.: Undoped amorphous SiN x :H alloy semiconductors: Dependence of electronic properties on composition. J. Non-Cryst. Solids 69(1), 39 (1984).
52. Robertson J. and O’reilly E.: Electronic and atomic structure of amorphous carbon. Phys. Rev. B: Condens. Matter Mater. Phys. 35(6), 2946 (1987).
53. Robertson J.: Gap states in diamond-like amorphous carbon. Philos. Mag. B 76(3), 335 (1997).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 5
Total number of PDF views: 76 *
Loading metrics...

Abstract views

Total abstract views: 356 *
Loading metrics...

* Views captured on Cambridge Core between 16th January 2017 - 21st January 2018. This data will be updated every 24 hours.