Skip to main content
×
Home
    • Aa
    • Aa

Electrochemical corrosion study of Sn–XAg–0.5Cu alloys in 3.5% NaCl solution

  • Udit Surya Mohanty (a1) and Kwang-Lung Lin (a1)
Abstract

The electrochemical corrosion behavior of Sn–XAg–0.5Cu alloys in 3.5% NaCl solution was examined using potentiodynamic polarization techniques. The Ag content in the alloy was varied from 1 to 4 wt%. The polarization curves obtained for the alloys show an active–passive transition followed by a transpassive region. Sn–XAg–0.5Cu alloys with higher Ag content (>2 wt%) show a strong tendency toward passivation. The passivation behavior has been ascribed to the presence of both SnO and SnO2 on the anode surface. Increase in Ag content from 1 to 4 wt% results in a decrease in the corrosion-current density (Icorr) and linear polarization resistance (LPR) of the alloy. Nevertheless, the corrosion potential (Ecorr) shifts toward negative values, and a decrease in corrosion rate is observed. The presence of Cl ion initiates pitting and is responsible for the rupture of the passive layer at a certain breakdown potential. The breakdown potential (EBR) decreases and shifts toward more noble values with increase in Ag content in the alloy. Surface analyses by x-ray photoelectron spectroscopy (XPS) and Auger depth profile studies confirmed the formation of both Sn(II) and Sn(IV) oxides in the passive layer.

Copyright
Corresponding author
a)Address all correspondence to this author. e-mail: matkllin@mail.ncku.edu.tw
References
Hide All
1Stack J.R. Tin, lead, and tin-lead alloy plating baths. U.S. Patent No. 2313371, March, 1943
2Carano M.: Solderability of bright acid chock deposits (aptitude for the soldering of the brilliant tin coatings in acid medium). Plat. Surf. Finish. 70, 58 1983
3Baker R.G. Pulombo T.A.: Plat. Surf. Finish. 70, 63 1983
4Kim J.H., Suh M.S. Kwon H.S.: Effects of plating conditions on the microstructure of 80 Sn–20 Pb electrodeposits from an organic sulphonate bath. Surf. Coat. Technol. 78, 56 1996
5Liu Y. Pritzker M.: Effect of pulse plating on composition of Sn–Pb coatings deposited in fluoroborate solutions. J. Appl. Electrochem. 33, 1143 2003
6European Parliament Proposal for a Directive of the European Parliament and of the Council on Waste Electrical and Electronic Equipment and the Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment, (COM 2000) p. 347
7Fujiwara Y., Enomoto H., Nagao T. Hoshika H.: Composite plating of Sn–Ag alloys for Pb-free soldering. Surf. Coat. Technol. 169–170, 100 2000
8Puippe J.C. Fluehmann W.: Electrodeposition and properties of a silver–tin alloy. Plat. Surf. Finish. 70, 46 1983
9Kubota N. Sato E.: The properties of silver–tin alloy deposits from pyrophosphate bath. Electrochim. Acta. 30, 305 1985
10Arai S., Akatsuka H. Kaneko N.: Sn–Ag solder bump formation for flip-chip bonding by electroplating. J. Electrochem. Soc. 150, 10 2003
11Arai S., Kaneko N. Shinohara N.: Polarographic study on the smoothing of Sn–Ag alloy film electrodeposited from pyrophosphate iodide bath. Electrochemistry 69, 254 2001
12Arai S. Watanabe T.: Microstructure of Sn–Ag alloys electrodeposited from pyrophosphate-iodide solutions. Mater. Trans. 39, 439 1998
13Khaselev O., Zavarine I.S., Vysotskaya A., Fan C., Zhang Y. Abys J.: Electroplating and properties of Sn Bi and Sn Cu for lead free finishes. Trans. Inst. Met. Finish. 80, 200 2002
14Shiue R.K., Tsay L.W., Lin C.L. Ou J.L.: A Study of Sn– Bi–Ag–In lead-free solders. J. Mater. Sci. 38, 1269 2003
15Guaus E. Torrent-Burgues J.: Tin–zinc electrodeposition from sulphate–gluconate baths. J. Electroanal. Chem. 549, 25 2003
16Wu C.M.L., Yu D.Q., Law C.M.T. Wang L.: The properties of Sn–9Zn lead free solder alloys doped with trace rare earth elements. J. Electron. Mater. 31, 921 2002
17Lin K.L. Sun L.M.: Electrodeposition of eutectic Sn–Zn alloy by pulse plating. J. Mater. Res. 18, 2203 2003
18Kaneko N., Seki M., Arai S. Shinohara N.: Sn–Cu solder bump formation from acid sulfate baths using electroplating method. Electrochemistry 71, 791 2003
19Fukuda M., Imayoshi K. Matsumoto Y.: Effects of thiourea and polyoxyethylene lauryl ether on electrodeposition of Sn–Ag–Cu alloy as a Pb free solder. J. Electrochem. Soc. 149, C244 2002
20Shiue R.K., Tsay L.W., Lin C.L. Ou J.L.: A study of Sn– Bi–Ag–In lead-free solder. J. Mater. Sci. 38, 1269 2003
21Korhonen T.M. Kivilahti J.K.: Thermodynamics of the Sn–In–Ag solder system. J. Electron. Mat. 27, 149 1998
22JEIDA Challenges and Efforts Towards Commercialization of Lead-Free Solder Road Map 2000, Ver. 13, (Japan Electronics Industry Development Association, 2000
23Bath J., Handweker C. Bradley E.: Research update: lead-free solder alternatives. Circ. Assemb. 11, 5, 30 2000
24Zhao J., Qi L., Wang X. Wang L.: Influence of Bi on microstructures evolution and mechanical properties in Sn–Ag–Cu lead free solder. J. Alloys Compd. 375, 196 2004
25Kim K.S., Huh S.H. Suganuma K.: Effects of intermetallic compounds on properties of Sn–Ag–Cu lead free soldered joints. J. Alloys Compd. 352, 226 2003
26Wu B.Y., Chan Y.C. Alam M.O.: Electrochemical corrosion study of Pb-free solders. J. Mater. Res. 21, 62 2006
27Oulfajrite H., Sabbar A., Boulghallat M., Jouaiti A., Lbibb R. Zrinelli A.: Electrochemical behavior of a new solder material Sn–In–Ag. Mater. Lett. 57, 4368 2003
28Chen K.I. Lin K.L. International Symposium on Electronic Materials and Packaging, Hsinchu, Taiwan. 49 (2002)
29Adem E.: VG Scientific Auger Handbook, 1st ed.V.G Scientific Limited East Grinstead, England 1989
30Corrosion, Vol. 13, 9th Ed.,Metals Handbook ASM International Metals Park, OH 1987
31Tanaka H., Ueta F., Yoshihara S. Shirakashi T.: Effects of reflow processing and flux residue on ionic migration of lead-free solder plating using the quartz crystal microbalance method. Mater. Trans. 42(9), 3401 2001
32Refaey S.A.M. El-Rehim S.S. Abd: Inhibition of chloride pitting corrosion of tin in alkaline and near neutral medium by some inorganic anions. Electrochim. Acta. 42, 667 1997
33Kristen J.: Atlas of metal ligand equilibrium in aqueous solutions. Chester, 1978 623
34Mishra R. Balasubramanium R.: Effect of nanocrystalline grain size on the electrochemical and corrosion behavior of nickel. Corros. Sci. 46, 3019 2004
35Zhong L., Zhu H., Hu J., Xiao S. Gau F.: A passivation mechanism of doped polyaniline on 410 stainless steel in de-aerated H2SO4 solution. Electrochim. Acta 51, 5494 2006
36Singh V.B. Gupta A.: Active, passive and transpassive dissolution of In-718 alloy in acidic solutions. Mater. Chem. Phys. 85(1), 12 2004
37Kolics A., Polkinghorne J.C. Wieckowski A.: Adsorption of sulfate and chloride ions on aluminium. Electrochim. Acta 43, 2605 1998
38Ricardson J.A. Wood G.C.: A study of the pitting corrosion of Al by scanning electron microscopy. Corros. Sci. 10, 313 1970
39Von Trzebiatowski O., Janczak J. Sutter T.: Microelectrochemical corrosion studies on lead free Sn–Ag–Cu solder alloys. Oral presentation at E-MRS Fall meeting, 2005.
40Chang T.C., Hou M.H., Wang M.C. Lin D.Y.: Electrochemical behaviors of the Sn–9Zn–XAg lead-free solders in a 3.5 wt% NaCl solution. J. Electrochem. Soc. 151(7), C484 2004
41Moulder J.F., Stickle W.F., Sobol P.E. Bomben K.D. Handbook of X-Ray Photo Electron Spectroscopy, 2nd ed.Perkin Elmer Corporation Physical Electronics Division 1992
42Katayama A.: Electroxidation of methanol on a platinum–tin oxide catalyst. J. Phys. Chem. 84, 376 1980
43Ansell R.O., Dickinson T., Povey A.F. Sherwood P.M.A.: X-ray photoelectron spectroscopic studies of tin electrodes after polarization in sodium hydroxide solution. J. Electrochem. Soc. 124(9), 1360 1977
44Briggs D. Seah M.P.: Practical Surface Analysis,, Publication No. 150, Vol. 1, 2nd ed. (John Wiley and Sons 1993)
45Chuang T.J., Brundle C.R. Rice D.W.: Interpretation of the x-ray photoemission spectra of cobalt oxides and cobalt oxide surfaces. Surf. Sci. 59, 413 1979
46Amanullah F.M., Pratap K.J. Babu V. Hari: Compositional analysis and depth profile studies on undoped and doped tin oxide films prepared by spray technique. Mater. Sci. Eng., A B52, 93 1998
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 4
Total number of PDF views: 8 *
Loading metrics...

Abstract views

Total abstract views: 138 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd October 2017. This data will be updated every 24 hours.