Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-30T06:21:20.864Z Has data issue: false hasContentIssue false

Evidence for Extensive Grain Boundary Meander and Overgrowth of Substrate Grain Boundaries in High Critical Current Density ex Situ YBa2Cu3O7−x Coated Conductors

Published online by Cambridge University Press:  01 August 2005

D.M. Feldmann*
Affiliation:
Applied Superconductivity Center, University of Wisconsin–Madison, Madison, Wisconsin 53706
D.C. Larbalestier
Affiliation:
Applied Superconductivity Center, University of Wisconsin–Madison, Madison, Wisconsin 53706
T. Holesinger
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
R. Feenstra
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
A.A. Gapud
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
E.D. Specht
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
*
a) Address all correspondence to this author. e-mail: feldmann@cae.wisc.edu
Get access

Abstract

It has been generally accepted that YBa2Cu3O7−x (YBCO) films deposited on deformation textured polycrystalline metal tapes result in YBCO grain boundary (GB) networks that essentially replicate the GBs of the underlying substrate. Here we report that for thicker YBCO films produced by a BaF2 ex situ process, this is not true. Using electron backscatter diffraction combined with ion milling, we have been able to map the evolution of the YBCO grain structure and compare it to the underlying template in several coated conductors. For thin (≤0.5 μm) YBCO films deposited on rolling-assisted biaxially textured substrates (RABiTS), the YBCO GBs nearly directly overlap the substrate GBs. For 0.7–1.4 μm YBCO films, the GBs were found to meander along the substrate GBs and along the sample normal, with displacements several times the film thickness. In very thick films (2.5–2.9 μm), the YBCO grains can completely overgrow substrate grains and GBs, resulting in a substantial disconnection of the YBCO and substrate GB networks. Similar behavior is found for BaF2 ex situ YBCO films on ion-beam-assisted deposition-type templates. The ability of the YBCO to overgrow substrate grains and GBs is believed to be due to liquid-phase mediated laminar grain growth. Although the behavior of the YBCO GB networks changes with YBCO film thickness, the samples maintained high critical current density (Jc) values of >2 MA/cm2 for films up to 1.4 μm thick, and up to0.9 MA/cm2 for 2.5–2.9-μm-thick films.

Type
Articles
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Larbalestier, D., Gurevich, A., Feldmann, D.M. and Polyanskii, A.: High-T-c superconducting materials for electric power applications. Nature 414, 368 (2001).CrossRefGoogle Scholar
2Arendt, P.N. and Foltyn, S.R.: Biaxially textured IBAD-MgO templates for YBCO-coated conductors. MRS Bull. 29(8), 543 (2004).CrossRefGoogle Scholar
3Iijima, Y., Kakimoto, K., Yamada, Y., Izumi, T., Saitoh, T. and Shiohara, Y.: Research and development of biaxially textured IBAD-GZO templates for coated superconductors. MRS Bull. 29(8), 564 (2004).CrossRefGoogle Scholar
4Goyal, A., Paranthaman, M.P. and Schoop, U.: The RABiTS approach: Using rolling-assisted biaxially textured substrates for high-performance YBCO superconductors. MRS Bull. 29(8), 552 (2004).CrossRefGoogle Scholar
5Gupta, A., Jagannathan, R., Cooper, E.I., Giess, E.A., Landman, J.I. and Hussey, B.W.: Superconducting oxide-films with high transition-temperature prepared from metal trifluoroacetate precursors. Appl. Phys. Lett. 52, 2077 (1988).CrossRefGoogle Scholar
6Feenstra, R., Lindemer, T.B., Budai, J.D. and Galloway, M.D.: Effect of oxygen-pressure on the synthesis of YBa2Cu3O7−X thin-films by post deposition annealing. J. Appl. Phys. 69, 6569 (1991).CrossRefGoogle Scholar
7Mcintyre, P.C. and Cima, M.J.: Heteroepitaxial growth of chemically derived ex-situ Ba2YCu3O7−X thin-films. J. Mater. Res. 9, 2219 (1994).CrossRefGoogle Scholar
8Solovyov, V.F., Wiesmann, H.J., Wu, L.J., Suenaga, M. and Feenstra, R.: High-rate deposition of 5-mu-m thick YBa2Cu3O7 films using the BaF2 ex-situ post annealing process. IEEE Trans. Appl. Supercond. 9, 1467 (1999).CrossRefGoogle Scholar
9Li, X., Rupich, M.W., Zhang, W., Nguyen, N., Kodenkandath, T., Schoop, U., Verebelyi, D.T., Thieme, C., Jowett, M., Arendt, P.N., Foltyn, S.R., Holesinger, T.G., Aytug, T., Christen, D.K. and Paranthaman, M.P.: High critical current MOD ex situ YBCO films on RABiTS (TM) and MgO-IBAD templates. Physica C 390, 249 (2003).CrossRefGoogle Scholar
10Selvamanickam, V., Lee, H.G., Li, Y., Reeves, J., Qiao, Y., Xie, Y.Y., Lenseth, K., Carota, G., Funk, M., Zdun, K., Xie, J., Likes, K., Jones, M., Hope, L. and Hazelton, D.W.: Scale up of highperformance Y-Ba-Cu-O coated conductors. IEEE Trans. Appl. Supercond. 13, 2492 (2003).CrossRefGoogle Scholar
11Donet, S., Weiss, F., Chaudouet, P., Beauquis, S., Abrutis, A., Freyhardt, H.C., Usokin, A., Selbmann, D., Eickemeyer, J., Jimenez, C., Bruzek, C.E. and Saugrain, J.M.: Reel-to-reel MOCVD for YBCO coated conductor. IEEE Trans. Appl. Supercond. 13, 2524 (2003).CrossRefGoogle Scholar
12Foltyn, S.R., Arendt, P.N., Dowden, P.C., DePaula, R.F., Groves, J.R., Coulter, J.Y., Jia, Q.X., Maley, M.P. and Peterson, D.E.: High-Tc coated conductors—Performance of meter-long YBCO/IBAD flexible tapes. IEEE Trans. Appl. Supercond. 9, 1519 (1999).CrossRefGoogle Scholar
13Ekin, J.W.: Electromechanical studies for superconductor development, in Superconductivity for Electric Systems 2004 Annual Peer Review (Washington, DC, 2004).Google Scholar
14Verebelyi, D.T., Christen, D.K., Feenstra, R., Cantoni, C., Goyal, A., Lee, D.F., Paranthaman, M., Arendt, P.N., DePaula, R.F., Groves, J.R. and Prouteau, C.: Low angle grain boundary transport in YBa2Cu3O7−δ coated conductors. Appl. Phys. Lett. 76, 1755 (2000).CrossRefGoogle Scholar
15Verebelyi, D.T., Cantoni, C., Budai, J.D., Christen, D.K., Kim, H.J. and Thompson, J.R.: Critical current density of YBa2Cu3O7−∂ low-angle grain boundaries in self-field. Appl. Phys. Lett. 78, 2031 (2001).CrossRefGoogle Scholar
16Feldmann, D.M., Larbalestier, D.C., Verebelyi, D.T., Zhang, W., Li, Q., Riley, G.N., Feenstra, R., Goyal, A., Lee, D.F., Paranthaman, M., Kroeger, D.M. and Christen, D.K.: Inter- and intragrain transport measurements in YBa2Cu3O7−x deformation textured coated conductors. Appl. Phys. Lett. 79, 3998 (2001).CrossRefGoogle Scholar
17Heinig, N.F., Redwing, R.D., Nordman, J.E. and Larbalestier, D.C.: Strong to weak coupling transition in low misorientation angle thin film YBa2Cu3O7−x bicrystals. Phys. Rev. B 60, 1409 (1999).CrossRefGoogle Scholar
18Arendt, P.N., Foltyn, S.R., Groves, J.R., DePaula, R.F., Dowden, P.C., Roper, J.M. and Coulter, J.Y.: YBCO/YSZ coated conductors on flexible Ni alloy substrates. Appl. Supercond. 4, 429 (1996).CrossRefGoogle Scholar
19Iijima, Y., Kakimoto, K., Kimura, M., Takeda, K. and Saitoh, T.: Reel to reel continuous formation of Y-123 coated conductors by IBAD and PLD method. IEEE Trans. Appl. Supercond. 11, 2816 (2001).CrossRefGoogle Scholar
20Goyal, A., Norton, D.P., Budai, J.D., Paranthaman, M., Specht, E.D., Kroeger, D.M., Christen, D.K., He, Q., Saffian, B., List, F.A., Lee, D.F., Martin, P.M., Klabunde, C.E., Hartfield, E. and Sikka, V.K.: High critical current density superconducting tapes by epitaxial deposition of YBa2Cu3Ox thick films on biaxially textured metals. Appl. Phys. Lett. 69, 1795 (1996).CrossRefGoogle Scholar
21Mankiewich, P.M., Scofield, J.H., Skocpol, W.J., Howard, R.E., Dayem, A.H. and Good, E.: Reproducible technique for fabrication of thin-films of high transition-temperature superconductors. Appl. Phys. Lett. 51, 1753 (1987).CrossRefGoogle Scholar
22Feenstra, R., Gapud, A.A., List, F.A., Specht, E.D., Christen, D.K., Holesinger, T.G. and Feldmann, D.M.: Critical currents I c(77 K) > 350 A/cm-width achieved in ex situ YBCO coated conductors using a faster conversion process. IEEE Trans. Appl. Supercond. 15, 2803 (2005).CrossRefGoogle Scholar
23Yoo, J., Leonard, K.J., Hsu, H.S., Heatherly, L., List, F.A., Lee, D.F., Gapud, A.A., Martin, P.M., Cook, S., Paranthaman, M., Goyal, A. and Kroeger, D.M.: The growth of YBCO films with high critical current at reduced pressures using the BaF2 ex situ process. Supercond. Sci. Technol. 17, 1209 (2004).CrossRefGoogle Scholar
24Rupich, M.W., Verebelyi, D.T., Zhang, W., Kodenkandath, T. and Li, X.P.: Metalorganic deposition of YBCO films for second-generation high-temperature superconductor wires. MRS Bull. 29(8), 572 (2004).CrossRefGoogle Scholar
25Holesinger, T.G., Arendt, P.N., Feenstra, R., Gapud, A.A., Specht, E.D., Feldmann, D.M. and Larbalestier, D.C.: Liquid mediated growth and the bi-modal microstructure of YBa2Cu3O7−∂ films made by the ex situ conversion of PVD-BaF2 precursors. J. Mater. Res. 20, 1216 (2005).CrossRefGoogle Scholar
26Feldmann, D.M., Reeves, J.L., Polyanskii, A.A., Kozlowski, G., Biggers, R.R., Nekkanti, R.M., Maartense, I., Tomsic, M., Barnes, P., Oberly, C.E., Peterson, T.L., Babcock, S.E. and Larbalestier, D.C.: Influence of nickel substrate grain structure on YBa2Cu3O7−x supercurrent connectivity in deformation-textured coated conductors. Appl. Phys. Lett. 77, 2906 (2000).CrossRefGoogle Scholar
27Feldmann, D.M., Reeves, J.L., Polyanskii, A.A., Goyal, A., Feenstra, R., Lee, D.F., Paranthaman, M., Kroeger, D.M., Christen, D.K., Babcock, S.E. and Larbalestier, D.C.: Magneto-optical imaging of transport currents in YBa2Cu3O7−x on RABiTS (TM). IEEE Trans. Appl. Supercond. 11, 3772 (2001).CrossRefGoogle Scholar
28Goyal, A., Ren, S.X., Specht, E.D., Kroeger, D.M., Feenstra, R., Norton, D., Paranthaman, M., Lee, D.F. and Christen, D.K.: Texture formation and grain boundary networks in rolling assisted biaxially textured substrates and in epitaxial YBCO films on such substrates. Micron. 30, 463 (1999).CrossRefGoogle Scholar
29Humphreys, F.J.: Characterisation of fine-scale microstructures by electron backscatter diffraction (EBSD). Scr. Mater. 51, 771 (2004).CrossRefGoogle Scholar
30Feldmann, D.M., Larbalestier, D.C., Feenstra, R., Gapud, A.A., Budai, J.D., Holesinger, T.G. and Arendt, P.N.: Through-thickness superconducting and normal-state transport properties revealed by thinning of thick film ex situ YBa2Cu3O7−x coated conductors. Appl. Phys. Lett. 83, 3951 (2003).CrossRefGoogle Scholar
31Feldmann, D.M. and Feenstra, R.: PVD-BaF2 films of 0.7, 1.0 and 1.4 microns thick deposited on RABiTS substrates were studied by EBSD and all found to exhibit varying degrees of GB meander. (unpublished).Google Scholar
32Jooss, C., Albrecht, J., Kuhn, H., Leonhardt, S. and Kronmuller, H.: Magneto-optical studies of current distributions in high-Tc superconductors. Rep. Prog. Phys. 65, 651 (2002).CrossRefGoogle Scholar
33Holesinger, T.H., unpublished (2004).Google Scholar
34Zhang, X.F., Miller, D.J. and Talvacchio, J.: Control of meandering grain boundary configurations in YBa2Cu3Oy bicrystal thin films based on deposition rate. J. Mater. Res. 11, 2440 (1996).CrossRefGoogle Scholar
35Miller, D.J., Roberts, T.A., Kang, J.H., Talvacchio, J., Buchholz, D.B. and Chang, R.P.H.: Meandering grain-boundaries in YBa2Cu3Oy Bi-crystal thin-films. Appl. Phys. Lett. 66, 2561 (1995).CrossRefGoogle Scholar
36Holesinger, T.H., Feldmann, D.M. and Feenstra, R.: Development of ex situ processed, high I c coated conductors, in Superconductivity for Electric Systems 2004 Annual Peer Review (Washington, DC, 2004).Google Scholar
37Durrell, J.H., Hogg, M.J., Kahlmann, F., Barber, Z.H., Blamire, M.G. and Evetts, J.E.: Critical current of YBa2Cu3O7−∂ low-angle grain boundaries. Phys. Rev. Lett. 90, 247006 (2003).CrossRefGoogle Scholar
38Kim, S.I., Feldmann, D.M., Verebelyi, D.T., Thieme, C., Zhang, W., Polyanskii, A.A. and Larbalestier, D.C.: Influence of the grain boundary network on the critical current density of deformation-textured MOD YBa2Cu3O7−x coated conductors. Phys. Rev. B 71, 104501 (2005).CrossRefGoogle Scholar