Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-30T04:02:38.382Z Has data issue: false hasContentIssue false

Extended x-ray absorption fine structure determination of local structure in sol-gel-derived lead titanate, lead zirconate, and lead zirconate titanate

Published online by Cambridge University Press:  03 March 2011

S.S. Sengupta
Affiliation:
Department of Materials Science and Engineering, Seitz Materials Research Laboratory, and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
L. Ma
Affiliation:
Department of Materials Science and Engineering, Seitz Materials Research Laboratory, and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
D.L. Adler
Affiliation:
Department of Materials Science and Engineering, Seitz Materials Research Laboratory, and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
D.A. Payne
Affiliation:
Department of Materials Science and Engineering, Seitz Materials Research Laboratory, and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
Get access

Abstract

We report on extended x-ray absorption fine structure (EXAFS) measurements for partially heat-treated gels in the lead zirconate titanate system (PZT). Self-consistent results obtained from the titanium and zirconium K-edges and the lead LIll-edge were used to determine bonding pathways between cations. For lead titantate (PT) and PZT gels, separate networks of predominantly Ti-O-Ti, Zr-O-Zr, and Pb-O-Pb linkages were observed. For lead zirconate (PZ) gels, both Zr-O-Pb and Zr-O-Zr linkages were observed. The results indicate heterogeneity at the molecular level. These findings are discussed in terms of the evolution of structure for PZT materials prepared by our sol-gel method.

Type
Rapid Communication
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Roy, R., Science 238, 1664 (1987).CrossRefGoogle Scholar
2Dey, S. K., Payne, D. A., and Budd, K. D., IEEE UFFC 35, 80 (1988).CrossRefGoogle Scholar
3Yi, G., Wu, Z., and Sayer, M., J. Appl. Phys. 64, 2717 (1988).CrossRefGoogle Scholar
4Lee, P. A., Citrin, P. H., Eisenberger, P., and Kincaid, B. M., Rev. Mod. Phys. 53, 769 (1981).CrossRefGoogle Scholar
5Koningsberger, D. C. and Prins, R., X-Ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS and XANES (John Wiley & Sons, New York, 1988).Google Scholar
6Adler, D. L., Jacobson, D. C., Eaglesham, D. J., Marcus, M. A., Benton, J. L., Poate, J. M., and Citrin, P. H., Appl. Phys. Lett. 61, 2181 (1992).CrossRefGoogle Scholar
7Adler, D. L., Collins, I. R., Liang, X., Murray, S. J., Leather-man, G. S., Tsuei, K-D., Chaban, E. E., Chandavarkar, S., McGrath, R., Diehl, R. D., and Citrin, P. H., Phys. Rev. B 48, 17445 (1993).CrossRefGoogle Scholar
8Li, P., Chen, I-W., Penner-Hahn, J. E., and Tien, T. Y., J. Am. Ceram. Soc. 74, (5), 958 (1991).CrossRefGoogle Scholar
9Zschech, E., Auerswald, G., Klinkenberg, E. D., and Novgorodov, B. N., Nucl. Instrum. Methods in Phys. Res. A 308, 255 (1991).CrossRefGoogle Scholar
10Cole, M., Catlow, C. R. A., and Dragun, J. P., J. Phys. Chem. Solids 51, 507 (1990).CrossRefGoogle Scholar
11Turrillas, X., Barnes, P., Dent, A. J., Jones, S. L., and Norman, C. J., J. Mater. Chem. 3, 583(1993)Google Scholar
12Okasaka, K., Nasu, H., and Kamiya, K., J. Non-Cryst. Solids 136, 103 (1991).CrossRefGoogle Scholar
13Ahlfänger, R., Bertagnolli, H., Ertel, T., Kolb, U., Peter, D., Naϐ, R., and Schmidt, H., Ber. Bunsenges. Phys. Chem. 95, 1286 (1991).CrossRefGoogle Scholar
14Rehr, J. J. and Albers, R. C., Phys. Rev. B 41, 8139 (1990).CrossRefGoogle Scholar
15Budd, K. D., Dey, S. K., and Payne, D. A., Brit. Ceram. Proc. 36, 107 (1985).Google Scholar
16Self-absorption at the Ti K-edge is not important in the PT and PZT materials, due to the heavy absorption of Pb which effectively dilutes the Ti. For TiO2, the sample was less than one absorption length (7 μm) thick.Google Scholar
17Tan, Z., Budnick, J. I., and Heald, S., Rev. Sci. Instrum. 60, 1021 (1989).CrossRefGoogle Scholar
18Teo, B. K., EXAFS: Basic Principles and Data Analysis (Springer-Verlag, Berlin, 1986).CrossRefGoogle Scholar
19Li, S., Condrate, R. A. Sr., and Spriggs, R. M., J. Can. Ceram. Soc. 57(4), 61 (1988).Google Scholar
20Greaves, G. N., Gurman, S. J., Gladden, L. F., Spence, C. A., Cox, P., Sales, B. C., Boatner, L. A., and Jenkins, R. N., Philos. Mag. B 58(3), 271 (1988).CrossRefGoogle Scholar
21Kwok, C. K. and Desu, S. B., J. Mater. Res. 8, 339 (1993).CrossRefGoogle Scholar
22Lakeman, C. D. E., Xu, Z., and Payne, D. A., unpublished results.Google Scholar