Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T19:29:08.129Z Has data issue: false hasContentIssue false

The failure stress of bulk metallic glasses under very high strain rate

Published online by Cambridge University Press:  31 January 2011

Kai-Xin Liu*
Affiliation:
LTCS and Department of Mechanics & Aerospace Engineering, College of Engineering, Center for Applied Physics and Technology, Peking University, Beijing 100871, China
Wei-Hua Wang
Affiliation:
Institute of Physics, Chinese Academy of Sciences, Beijing 100080, China
*
a)Address all correspondence to this author. e-mail: kliu@pku.edu.cn
Get access

Abstract

The dynamic uniaxial compressive behavior of Zr-based metallic glasses under a wide high strain rate was studied by a miniaturized split Hopkinson pressure bar, including high strain rate up to 104 s−1. Experimental results indicate that the uniaxial compressive failure stress would decrease suddenly and then tend to hold steady with increasing strain rate. This phenomenon provides a generalized perspective for understanding the effect of local heat generation on the deformation of metallic glasses under dynamic loads.

Type
Materials Communications
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Liu, K.X., Liu, W.D., Wang, J.T., Yan, H.H., Li, X.J., Huang, Y.J., Wei, X.S., Shen, J.Atomic-scale bonding of bulk metallic glass to crystalline aluminum. Appl. Phys. Lett. 93, 081918 (2008)CrossRefGoogle Scholar
2.Wang, W.H.Role of minor addition in the formation and proprieties of bulk metallic glasses. Prog. Mater. Sci. 52, 540 (2007)CrossRefGoogle Scholar
3.Bruck, H.A., Rosakis, A.J., Johnson, W.L.The dynamic compressive behavior of beryllium bearing bulk metallic glasses. J. Mater. Res. 11, 503 (1996)CrossRefGoogle Scholar
4.Hufnagel, T.C., Jiao, T., Li, Y., Xing, L.Q., Ramesh, K.T.Deformation and failure of Zr57Ti5Cu20Ni8Al10 bulk metallic glass under quasi-static and dynamic compression. J. Mater. Res. 17, 1441 (2002)CrossRefGoogle Scholar
5.Subhash, G., Dowding, R.J., Kecskes, L.J.Characterization of uniaxial compressive response of bulk amorphous Zr–Ti–Cu–Ni–Be alloy. Mater. Sci. Eng., A 334, 33 (2002)CrossRefGoogle Scholar
6.Mukai, T., Nieh, T.G., Kwamura, Y.Effect of strain rate on compressive behavior of a Pd40Ni40P20 bulk metallic glass. Intermetallics 10, 1071 (2002)CrossRefGoogle Scholar
7.Xue, Y.F., Cai, H.N., Wang, L., Wang, F.C., Zhang, H.F.Effect of loading rate on failure in Zr-based bulk metallic glass. Mater. Sci. Eng., A 473, 105 (2008)CrossRefGoogle Scholar
8.Li, H., Subhash, G., Gao, X.L., Kecskes, L.J., Dowding, R.J.Negative strain rate sensitivity and compositional dependence of fracture strength in Zr/Hf based bulk metallic glasses. Scr. Mater. 49, 1087 (2003)CrossRefGoogle Scholar
9.Zhang, J., Park, J.M., Kim, D.H., Kim, H.S.Effect of strain rate on compressive behavior of Ti45Zr16Ni9Cu10Be20 bulk metallic glass. Mater. Sci. Eng., A 449–451, 290 (2007)CrossRefGoogle Scholar
10.Johnson, W.L., Samwer, K.A universal criterion for plastic yielding of metallic glasses with a (T/T g)2/3 temperature dependence. Phys. Rev. Lett. 95, 195501 (2005)CrossRefGoogle ScholarPubMed
11.Yang, Q., Mota, A., Ortiz, M.A finite-deformation constitutive model of bulk metallic glass plasticity. Comput. Mech. 37, 194 (2006)CrossRefGoogle Scholar
12.Zhang, H.W., Maiti, S., Subhash, G.Evolution of shear bands in bulk metallic glasses under dynamic loading. J. Mech. Phys. Solids 56, 2171 (2008)CrossRefGoogle Scholar
13.Lewandowski, J.J., Greer, A.L.Temperature rise at shear bands in metallic glasses. Nat. Mater. 5, 15 (2006)CrossRefGoogle Scholar
14.Jia, D., Ramesh, K.T.A rigorous assessment of the benefits of miniaturization in the Kolsky bar system. Exp. Mech. 44, 445 (2004)CrossRefGoogle Scholar
15.Liu, Y.H., Wang, G., Wang, R.J., Zhao, D.Q., Pan, M.X., Wang, W.H.Super plastic bulk metallic glasses at room temperature. Science 315, 1385 (2007)CrossRefGoogle ScholarPubMed
16.Kaschner, G.C., Gray, G.T. IIIThe influence of crystallographic texture and interstitial impurities on the mechanical behavior of zirconium. Metall. Mater. Trans. A 31, 1997 (2000)CrossRefGoogle Scholar
17.Bai, Y.L., Dobb, B.Adiabatic Shear Localization: Occurrence, Theories and Applications (Pergamon Press, Oxford, UK 1992)Google Scholar
18.Schuh, C.A., Hufnagel, T.C., Ramamurty, U.Mechanical behavior of amorphous alloys. Acta Mater. 55, 4067 (2007)CrossRefGoogle Scholar
19.Dalla Torre, F.H., Dubach, A., Schallibaum, J., Loffler, J.F.Shear striations and deformation kinetics in highly deformed Zr-based bulk metallic glasses. Acta Mater. 56, 4635 (2008)CrossRefGoogle Scholar
20.Argon, A.S.Plastic deformation in metallic glasses. Acta Metall. 27, 47 (1979)CrossRefGoogle Scholar
21.Fu, X.L., Li, Y., Schuh, C.A.Contributions to the homogeneous plastic flow of in situ metallic glass matrix composites. Appl. Phys. Lett. 87, 241904 (2005)CrossRefGoogle Scholar
22.Reger-Leonhard, A., Heilmaier, M.J., Eckert, J.Newtonian flow of Zr55Cu30Al10Ni5 bulk metallic glassy alloys. Scr. Mater. 43, 459 (2000)CrossRefGoogle Scholar
23.Lu, J., Ravichandran, G., Johnson, W.L.Deformation behavior of the Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass over a wide range of strain rates and temperatures. Acta Mater. 51, 3429 (2003)CrossRefGoogle Scholar