Skip to main content
×
Home

Fiber-reinforced magneto-polymer matrix composites (FR–MPMCs)—A review

  • Muhammad Musaddique Ali Rafique (a1), Everson Kandare (a1) and Stephan Sprenger (a2)
Abstract
Abstract

Magneto polymer matrix composites (MPMC) is a new class of magnetic polymer materials which are being developed and under investigation as potential materials for tomorrow’s aircraft structures. It encompasses magnetic, particulate strengthening (dispersion strengthening) as well as fiber reinforcement/strengthening characteristics which are sought out to be utilized toward making efficient future aerospace composite materials. Various types of ferrites including barium, cobalt, iron, and strontium were explored for being used in making new composites. Here a comprehensive review of the synthesis, structure, properties, thermodynamics, surface chemistry, and phase transformations of individual ferrites and clusters of ferrites as fillers is presented. In particular a discussion about the rational control of the mechanical, physical, thermal, electrical, and magnetic properties of magneto polymer matrix composites through surface functionalization, modification, emulsification/compounding/blending, heat treatment (phase transformation and separation), and control of processing conditions (temperature, pressure and geometry of mold) is provided. These smart materials have a wide range of potential applications in medicine, drug delivery, bio imaging, bio marking, tissue engineering, electromagnetic interference (EMI) and electromagnetic force (EMF) shielding, and as competent materials for aerospace structural applications.

Copyright
Corresponding author
a) Address all correspondence to this author. e-mail: s3469212@student.rmit.edu.au, ali.rafique@hotmail.com
Footnotes
Hide All

Contributing Editor: Michael E. McHenry

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.

Footnotes
References
Hide All
1. Halliday D., Resnick R., and Krane K.: Fundamentals of Physics, 9th ed. (John Wiley and Sons, New York, 2011).
2. Buschow K.H.J. and de Boer F.R.: Physics of Magnetism and Magnetic Materials (Kluwer Academic/Plenum Publishers, New York, 2004).
3. Goldman A.: Modern Ferrite Technology, 2nd ed. (Springer Science + Business Media, Inc., Pittsburgh, 2006).
4. Smit J. and Wijn H.P.J.: Ferrites. In Philips Technical Library (N. V. Philips, Gloeilampenfabrieken, Eindhoven, 1959).
5. Riches E.E.: Ferrites (Mills and Boon Limited, London, 1972).
6. Say M.G.: Magnetic Alloys and Ferrites (George Newns Limited, London, 1954).
7. Pullar R.C.: Hexagonal ferrites: A review of the synthesis, properties and applications of hexaferrite ceramics. Prog. Mater. Sci. 57, 11911334 (2012).
8. Martins P., Kolen’ko Y.V., Rivas J., and Lanceros-Mendez S.: Tailored magnetic and magnetoelectric responses of polymer-based composites. ACS Appl. Mater. Interfaces 7, 1501715022 (2015).
9. Sozeri H., Kurtan U., Topkaya R., Baykal A., and Toprak M.S.: Polyaniline (PANI)–Co0.5Mn0.5Fe2O4 nanocomposite: Synthesis, characterization and magnetic properties evaluation. Ceram. Int. 39, 51375143 (2013).
10. Khursheed T., Islam M.U., Iqbal M.A., Ali I., Shakoor A., Awan M.S., Iftikhar A., Khan M.A., and Ashiq M.N.: Synthesis and characterization of polyaniline–hexaferrite composites. J. Magn. Magn. Mater. 393, 814 (2015).
11. Puryanti D., Ahmad S.H., and Mustaffa H.A.: Effect of nickel–cobalt–zinc ferrite filler on electrical and mechanical properties of thermoplastic natural rubber composites. Polym.-Plast. Technol. Eng. 45, 561567 (2006).
12. Praveena K., Sadhana K., and Ramana S.M.: Structural and magnetic properties of NiCuZn ferrite/SiO2nanocomposites. J. Magn. Magn. Mater. 323, 21222128 (2011).
13. Raju P., Ramesh T., and Murthy S.R.: Ferrite + polymer nanocomposites for EMI applications. Int. J. ChemTech Res. 7(3), 13431350 (2015).
14. Chen S., Chen S., Zhao G., and Chen J.: Fabrication and properties of novel superparamagnetic, well-dispersed waterborne polyurethane/Ni–Zn ferrite nanocomposites. Compos. Sci. Technol. 119, 108114 (2015).
15. Wang C., Niu Y., Pei P., Shen Y., Zhang H., and Xie A.: Synthesis, characterization and dielectric properties of polyaniline@Ni0.5Zn0.5Fe2O4 composite nanofibers. Mater. Sci. Semicond. Process. 40, 140144 (2015).
16. Xie Y., Hong X., Wang X., Zhao J., Gao Y., Ling Y., Yan S., Shi L., and Zhang K.: Preparation and electromagnetic properties of La-doped barium–ferrite/polythiophene composites. Synth. Met. 162, 16431647 (2012).
17. Xie Y., Hong X., Gao Y., Li M., Liu J., Wang J., and Lu J.: Synthesis and characterization of La/Nd-doped barium–ferrite/polypyrrole nanocomposites. Synth. Met. 162, 677681 (2012).
18. Chen L. and Xing-long G.: Damping of magneto rheological elastomers. J. Cent. South Univ. 15(1), 271274 (2008).
19. Kallio M.: The Elastic and Damping Properties of Magnetorheological Elastomers, Vol. 565 (VTT Publications, Espoo, 2005); p. 146.
20. Fulco A.P.P., Melo J.D.D., Paskocimas C.A., Medeiros S.N., Machado F.L.A., and Rodrigues A.R.: Magnetic properties of polymer matrix composites with embedded ferrite particles. NDT&E Int. 77, 4248 (2016).
21. Andrei G., Dima D., Birsan L.G., and Circiumaru A.: Effect of ferrite particles on mechanical behaviour of glass fibre reinforced polymer composite. Mater. Plast. 46(3), 284287 (2009).
22. Dima D. and Andrei G.: Investigation of the effect of Fe3O4 particles on the interface of Gf–Pr–Fa magnetic composites. Materialwiss. Werkstofftech. 34, 349353 (2003).
23. Kessler M.R., Sottos N.R., and White S.R.: Self-healing structural composite materials. Composites, Part A 34, 743753 (2003).
24. Trask R.S., Williams H.R., and Bond I.P.: Self-healing polymer composites: Mimicking nature to enhance performance. Bioinspiration & Biomimetics 2, 19 (2007).
25. Bond I.P., Trask R.S., Williams H.R., and Williams G.J.: Self-healing Fibre-reinforced Polymer Composites: An Overview, in Self-healing Polymers, van der Swaag S., ed. (Springer Publishing, Houten, 2015).
26. Bychkova A.V.: Magnetic and transport properties of magneto-anisotropic nanocomposites for controlled drug delivery. Nanotechnol. Russ. 10(3–4), 325335 (2015). [in Russian].
27. Gundermann T., Günther S., Borin D., and Odenbach S.: A comparison between micro- and macro-structure of magnetoactive composites, 13th Int. Conf. on Electrorheological Fluids and Magnetorheological Suspensions (ERMR2012). J. Phys.: Conf. Ser. 412, 012027 (2013).
28. Bica I., Anitas E.M., and Averis L.M.E.: Tensions and deformations in composites based on polyurethane elastomer and magnetorheological suspension: Effects of the magnetic field. J. Ind. Eng. Chem. 28, 8690 (2015).
29. Boczkowska A., Awietjan S.F., Pietrzko S., and Kurzydłowski K.J.: Mechanical properties of magnetorheological elastomers under shear deformation. Composites, Part B 43, 636640 (2012).
30. Boczkowska A. and Awietjan S.: Intelligent magnetorheological elastomer composites. Polimery 58(6), 443449 (2013).
31. Li J., Gong X., Zhu H., and Jiang W.: Influence of particle coating on dynamic mechanical behaviors of magnetorheological elastomers. Polym. Test. 28, 331337 (2009).
32. Qiao X., Lu X., Gong X., Yang T., Sun K., and Chen X.: Effect of carbonyl iron concentration and processing conditions on the structure and properties of the thermoplastic magnetorheological elastomer composites based on poly(styrene-b-ethylene-co-butylene-b-styrene) (SEBS). Polym. Test. 47, 5158 (2015).
33. Zhou Y.: The influence of particle content on the equi-biaxial fatigue behaviour of magnetorheological elastomers. Mater. Des. 67, 398404 (2015).
34. Razzaq M.Y., Behl M., and Lendlein A.: Magnetic memory effect of nanocomposites. Adv. Funct. Mater. 22, 184191 (2012).
35. Thévenot J., Oliveira H., Sandre O., and Lecommandoux S.: Magnetic responsive polymer composite materials. Chem. Soc. Rev. 42, 7099 (2013).
36. Grujić A., Talijan N., Stojanović D., Stajić-Trošić J., Burzić Z., Balanović L.j., and Aleksić R.: Mechanical and magnetic properties of composite materials with polymer matrix. J. Min. Metall., Sect. B 46(1), 2532 (2010).
37. Andrei G., Dima D., Bîrsan L.G., and Andrei L.: Improving the properties of new magnetic composite with polyester resin matrix. In Proc. of ROTRIB'03, National Tribology Conference, Galati, The annals of the university “Dunarea de Jos” of Galati, Fascicle VIII: Tribology (2003); pp. 124128.
38. Dima D. and Mitoseriu O.: The use and behaviour of composite materials with particles when obtaining rolls for rolled sheet iron oiling plant. In Proc. of ROTRIB'03, National Tribology Conference, Galati, The annals of the university “Dunarea de Jos” of Galati, Fascicle VIII: Tribology (2003); pp. 115117.
39. Andrei G., Dima D., and Andrei L.: Lightweight magnetic composite for aircraft applications. J. Optoelectron. Adv. Mater. 8(2), 726730 (2006).
40. Goiti E., Hernandz R., Sanz R., Lepez D., Vazquez M., Mijangos C., Turcu R., Nan A., Bica D., and Vekas L.: Novel nanostructured magneto polymer composite. Nanostruct. Polym. Nanocompos. 2, 512 (2006).
41. Adrian C., Gabriel A., Iulian G.B., and Semenescu A.: Electrical conductivity of fabric based filled epoxy composites. Mater. Plast. 46(2), 211214 (2009).
42. Dima D.: Research on polymeric composite materials with particles using comparative tests. Acad. J. Manufact. Eng. 8(1), 4348 (2010).
43. Stabik J., Dybowska A., Pluszynski J., Szczepanik M., and Suchon L.: Magnetic induction of polymer composites filled with ferrite powders. Arch. Mater. Sci. Eng. 41(1), 1320 (2010).
44. Stabik J., Chrobak A., Haneczok G., and Dybowska A.: Magnetic properties of polymer matrix composites filled with ferrite powders. Arch. Mater. Sci. Eng. 48(2), 97102 (2011).
45. Stabik J., Dybowska A., and Chomiak M.: Polymer Composites filled with powders as polymer graded materials. J. Achiev. Mater. Manufact. Eng. 43(1), 153161 (2010).
46. Stabik J., Dybowska A., Szczepanik M., and Suchon L.: Viscosity measurement of epoxy resin filled with ferrite powders. Arch. Mater. Sci. Eng. 38(1), 3440 (2009).
47. Dobrzanski L.A. and Drak M.: Structure and properties of composite materials with polymer matrix reinforced Nd–Fe–B hard magnetic nanostructured particles. J. Mater. Process. Technol. 157–158, 650657 (2004).
48. Dobrzanski L.A. and Drak M.: Properties of composite materials with polymer matrix reinforced with Nd–Fe–B hard magnetic particles. J. Mater. Process. Technol. 175, 149156 (2006).
49. Drak M. and Dobrzanski L.A.: Hard magnetic materials Nd–Fe–B/Fe with epoxy resin matrix. J. Achiev. Mater. Manufact. Eng. 21(2), 6366 (2007).
50. Ziebowicz B., Szewieczek D., and Dobrazanski A.L.: Magnetic properties and structure of nanocomposites of powder Fe73.5Cu1Nb3Si13.5B9 alloy—Polymer type. J. Mater. Process. Technol. 157–158, 776780 (2004).
51. Szewieczek D., Dobrzański A.L., and Ziębowicz B.: Structure and magnetic properties of nanocomposite of nanocrystalline powder—Polymer type. J. Mater. Process. Technol. 157–158, 765770 (2004).
52. Ziebowicz B., Szewieczek D., Dobrzanski A.L., Wysłocki J.J., and Przybył A.: Structure and properties of composite materials consisting of the nanocrystalline Fe73.5Cu1Nb3Si13.5B9 alloy powders and polyethylene. J. Mater. Process. Technol. 162–163, 149155 (2005).
53. Dobrzański L.A., Drak M., and Ziębowicz B.: New possibilities of composite materials applications – materials with specific magnetic properties. J. Mater. Process. Technol. 191, 352355 (2007).
54. Dobrzański L.A., Tomiczek A., Tomiczek B., Ślawska-Waniewska A., and Iesenchuk O.: Polymer matrix composite materials reinforced by Tb0.3Dy0.7Fe1.9 magnetostrictive particles. J. Achiev. Mater. Manufact. Eng. 37(1), 1623 (2009).
55. Valko L., Bucek P., Dosoudil R., and Usakova M.: Magnetic properties of ferrite polymer composites. J. Electr. Eng. 54(3–4), 100103 (2003).
56. Rekošová J., Dosoudil R., Ušáková M., Ušák E., and Hudec I.: Magneto polymer composites with soft magnetic ferrite fillers. IEEE Trans. Magn. 49(1), (2013).
57. Rekosova J.: The influence of soft magnetic fillers on the properties of magneto polymer composites, Contributed Lecture (CL) 18. Chem. Listy 107, s40s100 (2013).
58. Cuevas J.M., Alonso J., German L., Iturrondobeitia M., Laza J.M., Vilas J.L., and León L.M.: Magneto-active shape memory composites by incorporating ferromagnetic microparticles in a thermo-responsive polyalkenamer. Smart Mater. Struct. 18, 075003 (2009).
59. A. Kumar and B. Bhattacharya: Real time integrity monitoring of composite laminates with magnetostrictive sensory layer. In Proc. SPIE Vol. 7268, Smart Structures, Devices, and Systems IV, S.F. Al-Sarawi, V.K. Varadan, N. Weste and K. Kalantar-Zadeh, eds. (SPIE, Melbourne, 2008); p. 72680N.
60. Krishnamurthy A.V., Anjanappa M., Wang Z., and Chen X.: Sensing of delaminations in composite laminates using embedded magnetostrictive particle layers. J. Intell. Mater. Syst. Struct. 10, 825835 (1999).
61. Currie G., Spayde D., and Myers O.: Two tiered analysis of CFRP laminate embedded with magnetostrictive particles. In Proc. of the ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS2010, Vol. 2 (ASME, Philadelphia, 2010); pp. 685691.
62. Oliver J.M., Currie G., and Rudd J.: Tensile testing and non-destructive evaluation scanning of varied ply CFRP laminates with embedded magnetostrictive particles. Presented at the 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference (held in Boston, 8–1 April 2013).
63. Chen X. and Anjanappa M.: Health monitoring of composites embedded with magnetostrictive thick film without disassembly. Smart Mater. Struct. 15, 2032 (2006).
64. Rudd J., Spayde D., and Myers O.: Experimental non-destructive testing using magnetostrictive particles embedded in carbon fibre reinforced polymer beams. In Proc. of the ASME 2012 Conference on Smart Materials, Adaptive Structures and Intelligent Systems SMASIS2012 (ASME, Stone Mountain, 2012); pp. 707711.
65. Zhupanska O.I. and Sierakowski R.I.: Mechanical response of composites in the presence of an electromagnetic field. Presented at the 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference (held in Austin, 1821 April 2005).
66. Carbas R.J.C., Marques E.A.S., Lopes A.M., and da Silva L.F.M.: Effect of Cure temperature on the glass transition temperature of an epoxy adhesive. J. Adhes. 90(1), 104119 (2013).
67. Khomenko A., Koricho E.G., and Haq M.: Monitoring the effect of micro-/nanofillers on curing induced shrinkage in epoxy resins. In Fillers and Reinforcements for Advanced Nanocomposites (Elsevier, Amsterdam, 2015); ch. 18.
68. Koricho E.G., Khomenko A., and Haq M.: Influence of nano-/microfillers on impact response of glass fibre-reinforced polymer composite. In Fillers and Reinforcements for Advanced Nanocomposites (Elsevier, Amsterdam, 2015); ch. 19.
69. Billmeyer F.W. Jr.: Textbook of Polymer Science, 3rd ed. (John Wiley and Sons, New York, 1984).
70. Ebewele R.C.: Polymer Science and Technology (CRC Press LLC, Boca Raton, 2000).
71. Ravve A.: Principles of Polymer Chemistry, 3rd ed. (Springer Science + Business Media, LLC, Heidelberg, 2012).
72. Fried J.R.: Polymer Science and Technology, 3rd ed. (Prentice Hall, Pearson Education Inc., Hoboken, 2014).
73. Carraher C.E. Jr.: Polymer Chemistry, 7th ed. (CRC Press and Taylor and Francis Group, LLC, Boca Raton, 2008).
74. Young R.J. and Lovell P.A.: Introduction to Polymers, 2nd ed. (Chapman and Hall, Melbourne, 1991).
75. Davis F.J., ed.: Polymer Chemistry—A Practical Approach (Oxford University Press, Oxford, 2004).
76. ASM Metals Handbook, Vol. 21 (ASM International, Materials Park, 2013).
77. Hong-bin T. and Cong-sheng G.: Trans. Nonferrous Met. Soc. China 21(7), 15631567 (2011).
78. US Department of Defense: Handbook of Composite Materials, Vol. 3. Polymer Matrix Composite Materials Usage, Design and Analysis (US Department of Defense, Washington, DC, 2002).
79. Zaia G.V.: PhD thesis, Technische Universitat München, Munich, Germany (2002).
80. Deok-Hui N., Kim B.G., Yoon J.Y., Lee M.H., Seo W-S., Jeong S-M., Yang C-W., and Lee W-J.: High-temperature chemical vapor deposition for SiC single crystal bulk growth using tetramethylsilane as a precursor. Cryst. Growth Des. 14, 55695574 (2014).
81. Forsberg U.: PhD thesis, Thesis No. 708, Linköpings universitet, Linköpings, Sweden (2001).
82. US Department of Defense: AMPTIAC Quarterly, Vol. 9, No. 2: High performance fibers for lightweight armor (2005).
83. Mouritz A.P.: Introduction to Aerospace Materials (Woodhead Publishing Limited, Cambridge, 2012).
84. Rawlings R.D. and Matthews F.L.: Composite Materials: Engineering and Science (CRC Press, Woodhead Publishing Limited, Cambridge, 1999).
85. Campbell F.C., eds: Polymer matrix composites. In Light Weight Materials—Understanding the Basics (ASM International, Materials Park, 2012); ch. 8.
86. Baker A., Dutton S., and Kelly D.: Composite Materials for Aircraft Structures, 2nd ed. (AIAA, Reston, 2004).
87. Akay M.: An Introduction to Polymer Matrix Composites, 1st ed. Ebook, www.bookboon.com.
88. Chawla K.K.: Composite Materials—Science and Engineering, 3rd ed. (Springer Science + Business Media, New York, 2012).
89. Wang R-M., Zheng S-R., and Zheng Y-P.: Polymer Matrix Composites and Technology (Woodhead Publishing Limited and Science Press Limited, Cambridge, 2011).
90. Boczkowska A., Awietjan S.F., Pietrzko S., and Kurzydłowski K.J.: Mechanical properties of magnetorheological elastomers under shear deformation. Composites, Part B 43, 636640 (2012).
91. Bica I., Anitas E.M., and Averis L.M.E.: Tensions and deformations in composites based on polyurethane elastomer and magnetorheological suspension: Effects of the magnetic field. J. Ind. Eng. Chem. 28, 8690 (2015).
92. Qiao X., Lu X., Gong X., Yang T., Sun K., and Chen X.: Effect of carbonyl iron concentration and processing conditions on the structure and properties of the thermoplastic magnetorheological elastomer composites based on poly(styrene-b-ethylene-co-butylene-b-styrene) (SEBS). Polym. Test. 47, 5158 (2015).
93. Boczkowska A. and Awietjan S.: Intelligent Magnetorheological elastomer composites. Polimery 58(6), 443449 (2013).
94. Masowski M. and Zaborski M.: Magnetorheological materials based on ethylene–octene elastomer. Polimery 59(11–12), 825833 (2014).
95. Małecki P., Krolewicz M., Krzak J., and Piglowski J.: Dynamic mechanical analysis of magnetorheological composites containing silica-coated carbonyl iron powder. J. Intell. Mater. Syst. Struct. 26(14), 18991905 (2015).
96. Aloui S. and Klüppel M.: Magneto-rheological response of elastomer composites with hybrid-magnetic fillers. Smart Mater. Struct. 24, 025016 (2015).
97. Biller A.M., Stolbov O.V., and Raikher L.Y.: Mesoscopic magnetomechanical hysteresis in a magnetorheological elastomer. Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 92, 023202 (2015).
98. Nakajima M.E. and Heidecker M.J.H.: Fundamentals of polymer nanocomposites technology. In Flame Retardant Polymer Nanocomposites, Morgan A.B. and Wilkie C.A., eds. (Wiley-Interscience, Hoboken, NJ, 2007).
99. Kandare E.: Development of 2-d nanostructured layered hydroxy salts (LHSs) and hydroxy double salts (HDSs) for new applications: Anionic exchange kinetics and polymer modification. PhD thesis, Marquette University, Milwaukee (2006).
100. van Oss C.J.: Interfacial Forces in Aqueous Media (Marcel Dekker, New York, 1994).
101. van Oss C.J. and Good R.J.: The mechanism of phase separation of polymers in organic medium-apolar and polar systems. J. Sep. Sci. Technol. 1, 1530 (1989).
102. Vaia R.A. and Giannelis E.P.: Lattice model of polymer melt intercalation in organically-modified layered silicates. Macromolecules 30, 79907999 (1997).
103. Vaia R.A. and Giannelis E.P.: Polymer melt intercalation in organicallymodified layered silicates: Model predictions and experiment. Macromolecules 30, 80008009 (1997).
104. Balazs A.C., Singh C., and Zhulina E.: Modeling the interactions between polymers and clay surfaces through self-consistent field theory. Macromolecules 31, 83708381 (1998).
105. Schartel B. and Wendorff J.H.: Molecular composites for molecular reinforcement: A promising concept between success and failure. Polym. Eng. Sci. 39(1), 128151 (1999).
106. Husman G., Helminiak T., Wellman M., Adams W., Wiff D., and Benner C.: Molecular composites—Rod like polymer reinforcing an amorphous polymer matrix. Technical Report, ADA086149 (Air Force Wright Aeronautical Labs, Patterson, 1980).
107. Pawlikowski G.T., Dutta D., and Weiss R.A.: Molecular composites and self-reinforced liquid crystalline polymer blends. Annu. Rev. Mater. Res. 21, 159184 (1991).
108. Kotomin S.V.: Polymer molecular composites—New history. J. Thermoplast. Compos. Mater. 26(1), 118 (2011).
109. Millan A. and Palacio F.: Magnetic polymer nanocomposites. In Polymer Nanocomposites, Mai Y.W. and Yu Z.Z., eds. (Woodhead Publishing Limited and CRC Press LLC, Cambridge, 2006); ch. 17.
110. Cheng S.Z.D.: Phase Transitions in Polymers—The Role of Metastable States (Elsevier, Amsterdam, 2008).
111. Keith H.D.: Phase transitions in high polymers. Metall. Trans. 4, 27472754 (1973).
112. Mussati R.G.: Rheology of Network Forming Systems. PhD thesis, University of Minnesota, Minneapolis (1975).
113. Vilesova M.S., Spasskova N.P., Lesnevskaya L.V., Guseva G.N., Izrailev L.G., and Zolotarev V.M.: Polym. Sci. U.S.S.R. 14, 1883 (1972).
114. French D.M., Strecker R.A.H., and Tompa A.S.: The maximum extent of reaction in Gelled Systems. J. Appl. Polym. Sci 14, 599610 (1970).
115. Dave R.S. and Loos A.C., eds.: Processing of Composites (Carl Hanser Verlag, Munich, 2000).
116. Rabinowitch E.: Collision Co-ordination, diffusion and reaction velocity in condensed systems. Trans. Faraday Soc. 33, 12251233 (1937).
117. Saleem A., Frormann L., and Iqbal A.: Mechanical, thermal and electrical resistivity properties of thermoplastic composites filled with carbon fibers and carbon particles. J. Polym. Res. 14, 121127 (2007).
118. Roger N.R., ed.: Particulate-filled Polymer Composites, 2nd ed. (Rapra Technology, Shrewsbury, 2003).
119. Gojny F.H., Wichmann M.H.G., Fiedler B., Bauhofer W., and Schulte K.: Influence of nano-modification on the mechanical and electrical properties of conventional fibre-reinforced composites. Composites, Part A 36, 15251535 (2005).
120. Haward R.N. and Thackray G.: Use of a mathematical model to describe isothermal stress-strain curves in glassy thermoplastics. Proc. R. Soc. London, Ser. A 302(1471), 453472 (1967).
121. Boyce M.C., Parks D.M., and Argon A.S.: Large inelastic deformation of glassy polymers. Part 1: Rate dependent constitutive model. Mech. Mater. 7, 1533 (1988).
122. Hasan O.A. and Boyce M.C.: A constitutive model for the nonlinear viscoelastic viscoplastic behaviour of glassy polymers. Polym. Eng. Sci. 35, 331344 (1995).
123. Buckley C.P. and Jones D.C.: Glass-rubber constitutive model for amorphous polymers near the glass transition. Polymer 36, 33013312 (1995).
124. Dooling P.J., Buckley C.P., and Hinduja S.: The onset of nonlinear viscoelasticity in multiaxial creep of glassy polymers: A constitutive model and its application to PMMA. Polym. Eng. Sci. 38, 892904 (1998).
125. Gerlach C., Buckley C.P., and Jones D.P.: Development of an integrated approach to modelling of polymer film orientation processes. Trans. Inst. Chem. Eng., Part A 76, 3844 (1998).
126. Tervoort T.A., Klompen E.T.J., and Govaert L.E.: A multi-mode approach to finite, three-dimensional, nonlinear viscoelastic behaviour of polymer glasses. J. Rheol. 40, 779797 (1996).
127. Govaert L.E., Timmermans P.H.M., and Brekelmans W.A.M.: The influence of intrinsic strain softening on strain localisation in polycarbonate: Modeling and experimental validation. J. Eng. Mater. Technol. 122, 177185 (2000).
128. Klompen E.T.J., Engels T.A.P., Govaert L.E., and Meijer H.E.H.: Modelling of the post-yield response of glassy polymers: Influence of thermomechanical history. Macromolecules 38(16), 69977008 (2005).
129. Theodorou D.N. and Suter U.W.: Local structure and the mechanism of response to elastic deformation in a glassy polymer. Macromolecules 19(2), 379387 (1986).
130. Kinloch A.J. and Taylor A.C.: The mechanical properties and fracture behaviour of epoxy-inorganic micro- and nano-composites. J. Mater. Sci. 41(11), 32713297 (2006).
131. Fornes T.D. and Paul D.R.: Modelling properties of nylon 6/clay nanocomposites using composite theories. Polymer 44(17), 49935013 (2003).
132. Luo J-J. and Daniel I.M.: Characterization and modeling of mechanical behavior of polymer/clay nanocomposites. Compos. Sci. Technol. 63(11), 16071616 (2003).
133. Halpin J.C. and Pagano N.J.: The laminate approximation of randomly oriented fibrous composites. J. Compos. Mater. 3, 720724 (1969).
134. Halpin J.C.: Strength and expansion estimates for oriented short fibre composites. J. Compos. Mater. 3, 732734 (1969).
135. Kinloch A.J., Maxwell D.L., and Young R.J.: The fracture of hybrid particulate composites. J. Mater. Sci. 20(11), 41694184 (1985).
136. Johnsen B.B., Kinloch A.J., Mohammed R.D., Taylor A.C., and Sprenger S.: Toughening mechanisms of nanoparticle modified epoxy polymers. Polymer 48, 530541 (2007).
137. Faber K.T. and Evans A.G.: Crack deflection processes—I. Theory. Acta Metall. 31(4), 565576 (1983).
138. Dong Y., Umer R., and Lau A.K-T., eds.: Fillers and Reinforcements for Advanced Nanocomposites (Woodhead Publishing, Cambridge, 2015).
139. Qin Q. and Ye J., eds.: Toughening Mechanisms in Composite Materials (Woodhead Publishing, Cambridge, 2015).
140. Althues H., Henle J., and Kaskel S.: Functional inorganic nanofillers for transparent polymers. Chem. Soc. Rev. 36, 14541465 (2007).
141. Ghasemi A., Liu X., and Morisako A.: Effect of additional elements on the structural properties, magnetic characteristics and natural resonance frequency of strontium ferrite nanoparticles/polymer composite. IEEE Trans. Magn. 45(10), 44204423 (2009).
142. Batlle X., Obradors X., Rodriguez-Carvajal J., Pernet M., Cabanas M.V., and Vallet M.: Cation distribution and intrinsic magnetic properties of Co-Ti-doped M-type barium ferrite. J. Appl. Phys. 70, 16141623 (1991).
143. Shimba K., Furuta K., Morimoto N., Tezuka N., and Sugimoto S.: Magnetic properties of nanoparticle–polymer composites prepared using surface modification and cross-linking reaction. Mater. Trans. 52(3), 486490 (2011).
144. Mouritz A.P.: Assessment of non–destructive evaluation techniques for defect detection in carbon fibre composite automotive wheels. Proc. Inst. Mech. Eng., Part D (2016). (under review).
145. Fischer H.: Polymer nanocomposites: From fundamental research to specific applications. Mater. Sci. Eng., C 23, 763772 (2003).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 19
Total number of PDF views: 89 *
Loading metrics...

Abstract views

Total abstract views: 572 *
Loading metrics...

* Views captured on Cambridge Core between 14th March 2017 - 19th November 2017. This data will be updated every 24 hours.