Skip to main content
×
Home
    • Aa
    • Aa

Fiber-reinforced magneto-polymer matrix composites (FR–MPMCs)—A review

  • Muhammad Musaddique Ali Rafique (a1), Everson Kandare (a1) and Stephan Sprenger (a2)
Abstract
Abstract

Magneto polymer matrix composites (MPMC) is a new class of magnetic polymer materials which are being developed and under investigation as potential materials for tomorrow’s aircraft structures. It encompasses magnetic, particulate strengthening (dispersion strengthening) as well as fiber reinforcement/strengthening characteristics which are sought out to be utilized toward making efficient future aerospace composite materials. Various types of ferrites including barium, cobalt, iron, and strontium were explored for being used in making new composites. Here a comprehensive review of the synthesis, structure, properties, thermodynamics, surface chemistry, and phase transformations of individual ferrites and clusters of ferrites as fillers is presented. In particular a discussion about the rational control of the mechanical, physical, thermal, electrical, and magnetic properties of magneto polymer matrix composites through surface functionalization, modification, emulsification/compounding/blending, heat treatment (phase transformation and separation), and control of processing conditions (temperature, pressure and geometry of mold) is provided. These smart materials have a wide range of potential applications in medicine, drug delivery, bio imaging, bio marking, tissue engineering, electromagnetic interference (EMI) and electromagnetic force (EMF) shielding, and as competent materials for aerospace structural applications.

Copyright
Corresponding author
a) Address all correspondence to this author. e-mail: s3469212@student.rmit.edu.au, ali.rafique@hotmail.com
Footnotes
Hide All

Contributing Editor: Michael E. McHenry

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.

Footnotes
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

R.C. Pullar : Hexagonal ferrites: A review of the synthesis, properties and applications of hexaferrite ceramics. Prog. Mater. Sci. 57, 11911334 (2012).

P. Martins , Y.V. Kolen’ko , J. Rivas , and S. Lanceros-Mendez : Tailored magnetic and magnetoelectric responses of polymer-based composites. ACS Appl. Mater. Interfaces 7, 1501715022 (2015).

H. Sozeri , U. Kurtan , R. Topkaya , A. Baykal , and M.S. Toprak : Polyaniline (PANI)–Co0.5Mn0.5Fe2O4 nanocomposite: Synthesis, characterization and magnetic properties evaluation. Ceram. Int. 39, 51375143 (2013).

T. Khursheed , M.U. Islam , M.A. Iqbal , I. Ali , A. Shakoor , M.S. Awan , A. Iftikhar , M.A. Khan , and M.N. Ashiq : Synthesis and characterization of polyaniline–hexaferrite composites. J. Magn. Magn. Mater. 393, 814 (2015).

D. Puryanti , S.H. Ahmad , and H.A. Mustaffa : Effect of nickel–cobalt–zinc ferrite filler on electrical and mechanical properties of thermoplastic natural rubber composites. Polym.-Plast. Technol. Eng. 45, 561567 (2006).

K. Praveena , K. Sadhana , and S.M. Ramana : Structural and magnetic properties of NiCuZn ferrite/SiO2nanocomposites. J. Magn. Magn. Mater. 323, 21222128 (2011).

S. Chen , S. Chen , G. Zhao , and J. Chen : Fabrication and properties of novel superparamagnetic, well-dispersed waterborne polyurethane/Ni–Zn ferrite nanocomposites. Compos. Sci. Technol. 119, 108114 (2015).

C. Wang , Y. Niu , P. Pei , Y. Shen , H. Zhang , and A. Xie : Synthesis, characterization and dielectric properties of polyaniline@Ni0.5Zn0.5Fe2O4 composite nanofibers. Mater. Sci. Semicond. Process. 40, 140144 (2015).

Y. Xie , X. Hong , X. Wang , J. Zhao , Y. Gao , Y. Ling , S. Yan , L. Shi , and K. Zhang : Preparation and electromagnetic properties of La-doped barium–ferrite/polythiophene composites. Synth. Met. 162, 16431647 (2012).

Y. Xie , X. Hong , Y. Gao , M. Li , J. Liu , J. Wang , and J. Lu : Synthesis and characterization of La/Nd-doped barium–ferrite/polypyrrole nanocomposites. Synth. Met. 162, 677681 (2012).

L. Chen and G. Xing-long : Damping of magneto rheological elastomers. J. Cent. South Univ. 15(1), 271274 (2008).

A.P.P. Fulco , J.D.D. Melo , C.A. Paskocimas , S.N. Medeiros , F.L.A. Machado , and A.R. Rodrigues : Magnetic properties of polymer matrix composites with embedded ferrite particles. NDT&E Int. 77, 4248 (2016).

D. Dima and G. Andrei : Investigation of the effect of Fe3O4 particles on the interface of Gf–Pr–Fa magnetic composites. Materialwiss. Werkstofftech. 34, 349353 (2003).

M.R. Kessler , N.R. Sottos , and S.R. White : Self-healing structural composite materials. Composites, Part A 34, 743753 (2003).

R.S. Trask , H.R. Williams , and I.P. Bond : Self-healing polymer composites: Mimicking nature to enhance performance. Bioinspiration & Biomimetics 2, 19 (2007).

A.V. Bychkova : Magnetic and transport properties of magneto-anisotropic nanocomposites for controlled drug delivery. Nanotechnol. Russ. 10(3–4), 325335 (2015). [in Russian].

I. Bica , E.M. Anitas , and L.M.E. Averis : Tensions and deformations in composites based on polyurethane elastomer and magnetorheological suspension: Effects of the magnetic field. J. Ind. Eng. Chem. 28, 8690 (2015).

A. Boczkowska , S.F. Awietjan , S. Pietrzko , and K.J. Kurzydłowski : Mechanical properties of magnetorheological elastomers under shear deformation. Composites, Part B 43, 636640 (2012).

A. Boczkowska and S. Awietjan : Intelligent magnetorheological elastomer composites. Polimery 58(6), 443449 (2013).

J. Li , X. Gong , H. Zhu , and W. Jiang : Influence of particle coating on dynamic mechanical behaviors of magnetorheological elastomers. Polym. Test. 28, 331337 (2009).

X. Qiao , X. Lu , X. Gong , T. Yang , K. Sun , and X. Chen : Effect of carbonyl iron concentration and processing conditions on the structure and properties of the thermoplastic magnetorheological elastomer composites based on poly(styrene-b-ethylene-co-butylene-b-styrene) (SEBS). Polym. Test. 47, 5158 (2015).

Y. Zhou : The influence of particle content on the equi-biaxial fatigue behaviour of magnetorheological elastomers. Mater. Des. 67, 398404 (2015).

M.Y. Razzaq , M. Behl , and A. Lendlein : Magnetic memory effect of nanocomposites. Adv. Funct. Mater. 22, 184191 (2012).

J. Thévenot , H. Oliveira , O. Sandre , and S. Lecommandoux : Magnetic responsive polymer composite materials. Chem. Soc. Rev. 42, 7099 (2013).

A. Grujić , N. Talijan , D. Stojanović , J. Stajić-Trošić , Z. Burzić , L.j. Balanović , and R. Aleksić : Mechanical and magnetic properties of composite materials with polymer matrix. J. Min. Metall., Sect. B 46(1), 2532 (2010).

L.A. Dobrzanski and M. Drak : Properties of composite materials with polymer matrix reinforced with Nd–Fe–B hard magnetic particles. J. Mater. Process. Technol. 175, 149156 (2006).

L.A. Dobrzański , M. Drak , and B. Ziębowicz : New possibilities of composite materials applications – materials with specific magnetic properties. J. Mater. Process. Technol. 191, 352355 (2007).

J. Rekošová , R. Dosoudil , M. Ušáková , E. Ušák , and I. Hudec : Magneto polymer composites with soft magnetic ferrite fillers. IEEE Trans. Magn. 49(1), (2013).

J.M. Cuevas , J. Alonso , L. German , M. Iturrondobeitia , J.M. Laza , J.L. Vilas , and L.M. León : Magneto-active shape memory composites by incorporating ferromagnetic microparticles in a thermo-responsive polyalkenamer. Smart Mater. Struct. 18, 075003 (2009).

A.V. Krishnamurthy , M. Anjanappa , Z. Wang , and X. Chen : Sensing of delaminations in composite laminates using embedded magnetostrictive particle layers. J. Intell. Mater. Syst. Struct. 10, 825835 (1999).

G. Currie , D. Spayde , and O. Myers : Two tiered analysis of CFRP laminate embedded with magnetostrictive particles. In Proc. of the ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS2010, Vol. 2 (ASME, Philadelphia, 2010); pp. 685691.

X. Chen and M. Anjanappa : Health monitoring of composites embedded with magnetostrictive thick film without disassembly. Smart Mater. Struct. 15, 2032 (2006).

J. Rudd , D. Spayde , and O. Myers : Experimental non-destructive testing using magnetostrictive particles embedded in carbon fibre reinforced polymer beams. In Proc. of the ASME 2012 Conference on Smart Materials, Adaptive Structures and Intelligent Systems SMASIS2012 (ASME, Stone Mountain, 2012); pp. 707711.

R.J.C. Carbas , E.A.S. Marques , A.M. Lopes , and L.F.M. da Silva : Effect of Cure temperature on the glass transition temperature of an epoxy adhesive. J. Adhes. 90(1), 104119 (2013).

A. Khomenko , E.G. Koricho , and M. Haq : Monitoring the effect of micro-/nanofillers on curing induced shrinkage in epoxy resins. In Fillers and Reinforcements for Advanced Nanocomposites (Elsevier, Amsterdam, 2015); ch. 18.

E.G. Koricho , A. Khomenko , and M. Haq : Influence of nano-/microfillers on impact response of glass fibre-reinforced polymer composite. In Fillers and Reinforcements for Advanced Nanocomposites (Elsevier, Amsterdam, 2015); ch. 19.

R.C. Ebewele : Polymer Science and Technology (CRC Press LLC, Boca Raton, 2000).

A. Ravve : Principles of Polymer Chemistry, 3rd ed. (Springer Science + Business Media, LLC, Heidelberg, 2012).

R.J. Young and P.A. Lovell : Introduction to Polymers, 2nd ed. (Chapman and Hall, Melbourne, 1991).

A.P. Mouritz : Introduction to Aerospace Materials (Woodhead Publishing Limited, Cambridge, 2012).

R.D. Rawlings and F.L. Matthews : Composite Materials: Engineering and Science (CRC Press, Woodhead Publishing Limited, Cambridge, 1999).

A. Baker , S. Dutton , and D. Kelly : Composite Materials for Aircraft Structures, 2nd ed. (AIAA, Reston, 2004).

K.K. Chawla : Composite Materials—Science and Engineering, 3rd ed. (Springer Science + Business Media, New York, 2012).

R-M. Wang , S-R. Zheng , and Y-P. Zheng : Polymer Matrix Composites and Technology (Woodhead Publishing Limited and Science Press Limited, Cambridge, 2011).

A. Boczkowska , S.F. Awietjan , S. Pietrzko , and K.J. Kurzydłowski : Mechanical properties of magnetorheological elastomers under shear deformation. Composites, Part B 43, 636640 (2012).

I. Bica , E.M. Anitas , and L.M.E. Averis : Tensions and deformations in composites based on polyurethane elastomer and magnetorheological suspension: Effects of the magnetic field. J. Ind. Eng. Chem. 28, 8690 (2015).

X. Qiao , X. Lu , X. Gong , T. Yang , K. Sun , and X. Chen : Effect of carbonyl iron concentration and processing conditions on the structure and properties of the thermoplastic magnetorheological elastomer composites based on poly(styrene-b-ethylene-co-butylene-b-styrene) (SEBS). Polym. Test. 47, 5158 (2015).

A. Boczkowska and S. Awietjan : Intelligent Magnetorheological elastomer composites. Polimery 58(6), 443449 (2013).

M. Masowski and M. Zaborski : Magnetorheological materials based on ethylene–octene elastomer. Polimery 59(11–12), 825833 (2014).

P. Małecki , M. Krolewicz , J. Krzak , and J. Piglowski : Dynamic mechanical analysis of magnetorheological composites containing silica-coated carbonyl iron powder. J. Intell. Mater. Syst. Struct. 26(14), 18991905 (2015).

S. Aloui and M. Klüppel : Magneto-rheological response of elastomer composites with hybrid-magnetic fillers. Smart Mater. Struct. 24, 025016 (2015).

A.M. Biller , O.V. Stolbov , and L.Y. Raikher : Mesoscopic magnetomechanical hysteresis in a magnetorheological elastomer. Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 92, 023202 (2015).

R.A. Vaia and E.P. Giannelis : Lattice model of polymer melt intercalation in organically-modified layered silicates. Macromolecules 30, 79907999 (1997).

R.A. Vaia and E.P. Giannelis : Polymer melt intercalation in organicallymodified layered silicates: Model predictions and experiment. Macromolecules 30, 80008009 (1997).

A.C. Balazs , C. Singh , and E. Zhulina : Modeling the interactions between polymers and clay surfaces through self-consistent field theory. Macromolecules 31, 83708381 (1998).

B. Schartel and J.H. Wendorff : Molecular composites for molecular reinforcement: A promising concept between success and failure. Polym. Eng. Sci. 39(1), 128151 (1999).

G.T. Pawlikowski , D. Dutta , and R.A. Weiss : Molecular composites and self-reinforced liquid crystalline polymer blends. Annu. Rev. Mater. Res. 21, 159184 (1991).

A. Millan and F. Palacio : Magnetic polymer nanocomposites. In Polymer Nanocomposites, Y.W. Mai and Z.Z. Yu , eds. (Woodhead Publishing Limited and CRC Press LLC, Cambridge, 2006); ch. 17.

S.Z.D. Cheng : Phase Transitions in Polymers—The Role of Metastable States (Elsevier, Amsterdam, 2008).

H.D. Keith : Phase transitions in high polymers. Metall. Trans. 4, 27472754 (1973).

D.M. French , R.A.H. Strecker , and A.S. Tompa : The maximum extent of reaction in Gelled Systems. J. Appl. Polym. Sci 14, 599610 (1970).

R.S. Dave and A.C. Loos , eds.: Processing of Composites (Carl Hanser Verlag, Munich, 2000).

E. Rabinowitch : Collision Co-ordination, diffusion and reaction velocity in condensed systems. Trans. Faraday Soc. 33, 12251233 (1937).

A. Saleem , L. Frormann , and A. Iqbal : Mechanical, thermal and electrical resistivity properties of thermoplastic composites filled with carbon fibers and carbon particles. J. Polym. Res. 14, 121127 (2007).

F.H. Gojny , M.H.G. Wichmann , B. Fiedler , W. Bauhofer , and K. Schulte : Influence of nano-modification on the mechanical and electrical properties of conventional fibre-reinforced composites. Composites, Part A 36, 15251535 (2005).

R.N. Haward and G. Thackray : Use of a mathematical model to describe isothermal stress-strain curves in glassy thermoplastics. Proc. R. Soc. London, Ser. A 302(1471), 453472 (1967).

M.C. Boyce , D.M. Parks , and A.S. Argon : Large inelastic deformation of glassy polymers. Part 1: Rate dependent constitutive model. Mech. Mater. 7, 1533 (1988).

O.A. Hasan and M.C. Boyce : A constitutive model for the nonlinear viscoelastic viscoplastic behaviour of glassy polymers. Polym. Eng. Sci. 35, 331344 (1995).

C.P. Buckley and D.C. Jones : Glass-rubber constitutive model for amorphous polymers near the glass transition. Polymer 36, 33013312 (1995).

P.J. Dooling , C.P. Buckley , and S. Hinduja : The onset of nonlinear viscoelasticity in multiaxial creep of glassy polymers: A constitutive model and its application to PMMA. Polym. Eng. Sci. 38, 892904 (1998).

C. Gerlach , C.P. Buckley , and D.P. Jones : Development of an integrated approach to modelling of polymer film orientation processes. Trans. Inst. Chem. Eng., Part A 76, 3844 (1998).

T.A. Tervoort , E.T.J. Klompen , and L.E. Govaert : A multi-mode approach to finite, three-dimensional, nonlinear viscoelastic behaviour of polymer glasses. J. Rheol. 40, 779797 (1996).

L.E. Govaert , P.H.M. Timmermans , and W.A.M. Brekelmans : The influence of intrinsic strain softening on strain localisation in polycarbonate: Modeling and experimental validation. J. Eng. Mater. Technol. 122, 177185 (2000).

E.T.J. Klompen , T.A.P. Engels , L.E. Govaert , and H.E.H. Meijer : Modelling of the post-yield response of glassy polymers: Influence of thermomechanical history. Macromolecules 38(16), 69977008 (2005).

D.N. Theodorou and U.W. Suter : Local structure and the mechanism of response to elastic deformation in a glassy polymer. Macromolecules 19(2), 379387 (1986).

A.J. Kinloch and A.C. Taylor : The mechanical properties and fracture behaviour of epoxy-inorganic micro- and nano-composites. J. Mater. Sci. 41(11), 32713297 (2006).

T.D. Fornes and D.R. Paul : Modelling properties of nylon 6/clay nanocomposites using composite theories. Polymer 44(17), 49935013 (2003).

J-J. Luo and I.M. Daniel : Characterization and modeling of mechanical behavior of polymer/clay nanocomposites. Compos. Sci. Technol. 63(11), 16071616 (2003).

A.J. Kinloch , D.L. Maxwell , and R.J. Young : The fracture of hybrid particulate composites. J. Mater. Sci. 20(11), 41694184 (1985).

B.B. Johnsen , A.J. Kinloch , R.D. Mohammed , A.C. Taylor , and S. Sprenger : Toughening mechanisms of nanoparticle modified epoxy polymers. Polymer 48, 530541 (2007).

K.T. Faber and A.G. Evans : Crack deflection processes—I. Theory. Acta Metall. 31(4), 565576 (1983).

Y. Dong , R. Umer , and A.K-T. Lau , eds.: Fillers and Reinforcements for Advanced Nanocomposites (Woodhead Publishing, Cambridge, 2015).

Q. Qin and J. Ye , eds.: Toughening Mechanisms in Composite Materials (Woodhead Publishing, Cambridge, 2015).

H. Althues , J. Henle , and S. Kaskel : Functional inorganic nanofillers for transparent polymers. Chem. Soc. Rev. 36, 14541465 (2007).

A. Ghasemi , X. Liu , and A. Morisako : Effect of additional elements on the structural properties, magnetic characteristics and natural resonance frequency of strontium ferrite nanoparticles/polymer composite. IEEE Trans. Magn. 45(10), 44204423 (2009).

X. Batlle , X. Obradors , J. Rodriguez-Carvajal , M. Pernet , M.V. Cabanas , and M. Vallet : Cation distribution and intrinsic magnetic properties of Co-Ti-doped M-type barium ferrite. J. Appl. Phys. 70, 16141623 (1991).

K. Shimba , K. Furuta , N. Morimoto , N. Tezuka , and S. Sugimoto : Magnetic properties of nanoparticle–polymer composites prepared using surface modification and cross-linking reaction. Mater. Trans. 52(3), 486490 (2011).

H. Fischer : Polymer nanocomposites: From fundamental research to specific applications. Mater. Sci. Eng., C 23, 763772 (2003).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 15
Total number of PDF views: 77 *
Loading metrics...

Abstract views

Total abstract views: 482 *
Loading metrics...

* Views captured on Cambridge Core between 14th March 2017 - 23rd September 2017. This data will be updated every 24 hours.