Skip to main content
×
×
Home

Finite element analysis of blister formation in laser-induced forward transfer

  • Nicholas T. Kattamis (a1), Matthew S. Brown (a1) and Craig B. Arnold (a1)
Abstract

Blister-actuated laser-induced forward transfer (BA-LIFT) is a direct-write technique, which enables high-resolution printing of sensitive inks for electronic or biological applications. During BA-LIFT, a polymer laser-absorbing layer deforms into an enclosed blister and ejects ink from an adjacent donor film. In this work, we develop a finite element model to replicate and predict blister expansion dynamics during BA-LIFT. Model inputs consist of standard mechanical properties, strain-rate-dependent material parameters, and a parameter encapsulating the thermal and optical properties of the film. We present methods to determine these material parameters from experimental measurements. The simulated expansion dynamics are shown to be in good agreement with experimental measurements using two different polymer layer thicknesses. Finally, the ability to model high-fluence blister rupture is demonstrated through a strain-based failure approach.

Copyright
Corresponding author
a)Address all correspondence to this author. e-mail: cbarnold@princeton.edu
References
Hide All
1.Bohandy, J., Kim, B.F., and Adrian, F.J.: Metal deposition from a supported metal film using an excimer laser. J. Appl. Phys. 60, 1538 (1986).
2.Piqué, A., Chrisey, D.B., Auyeung, R.C.Y., Fitz-Gerald, J., Wu, H.D., McGill, R.A., Lakeou, S., Wu, P.K., Nguyen, V., and Duignan, M.: A novel laser transfer process for direct writing of electronic and sensor materials. Appl. Phys. A 69, 279 (1999).
3.Piqué, A., Arnold, C.B., Kim, H., Ollinger, M., and Sutto, T.E.: Rapid prototyping of micropower sources by laser direct-write. Appl. Phys. A 79, 783 (2004).
4.Arnold, C.B., Serra, P., and Piqué, A.: Laser direct-write techniques for printing of complex materials. MRS Bull. 32, 23 (2007).
5.Willis, D.A., and Grosu, V.: Microdroplet deposition by laser-induced forward transfer. Appl. Phys. Lett. 86, 244103–1 (2005).
6.Schultze, V. and Wagner, M.: Blow-off of aluminium films. Appl. Phys., A Solids Surf. 53, 241 (1991).
7.Colina, M., Duocastella, M., Fernández-Pradas, J.M., Serra, P., and Morenza, J.L.: Laser-induced forward transfer of liquids: Study of the droplet ejection process. J. Appl. Phys. 99, 084909–1 (2006).
8.Colina, M., Serra, P., Fernández-Pradas, J.M., Sevilla, L., and Morenza, J.L.: DNA deposition through laser induced forward transfer. Biosens. Bioelectron. 20, 1638 (2005).
9.Fitz-Gerald, J.M., Piqué, A., Chrisey, D.B., Rack, P.D., Zeleznik, M., Auyeung, R.C.Y., and Lakeou, S.: Laser direct writing of phosphor screens for high-definition displays. Appl. Phys. Lett. 76, 1386 (2000).
10.Brown, M., Kattamis, N., and Arnold, C.: Time-resolved dynamics of laser-induced micro-jets from thin liquid films. Microfluid. Nanofluid. 11, 199 (2011).
11.Kattamis, N.T., McDaniel, N.D., Bernhard, S., and Arnold, C.B.: Laser direct write printing of sensitive and robust light emitting organic molecules. Appl. Phys. Lett. 94, 103306–1 (2009).
12.Fardel, R., Nagel, M., Nüesch, F., Lippert, T., and Wokaun, A.: Fabrication of organic light-emitting diode pixels by laser-assisted forward transfer. Appl. Phys. Lett. 91, 061103–1 (2007).
13.Xu, J., Liu, J., Cui, D., Gerhold, M., Wang, A.Y., Nagel, M., and Lippert, T.K.: Laser-assisted forward transfer of multi-spectral nanocrystal quantum dot emitters. Nanotechnology 18, 025403–1 (2007).
14.Ko, S.H., Pan, H., Ryu, S.G., Misra, N., Grigoropoulos, C.P., and Park, H.K.: Nanomaterial enabled laser transfer for organic light emitting material direct writing. Appl. Phys. Lett. 93, 151110–1 (2008).
15.Birnbaum, A.J., Heungsoo, K., Charipar, N.A., and Piqué, A.: Laser printing of multi-layered polymer/metal heterostructures for electronic and MEMS devices. Appl. Phys. A 99, 711 (2010).
16.Brown, M.S., Kattamis, N.T., and Arnold, C.B.: Time-resolved study of polyimide absorption layers for blister-actuated laser-induced forward transfer. J. Appl. Phys. 107, 083103–1 (2010).
17.Kattamis, N.T., Purnick, P.E., Weiss, R., and Arnold, C.B.: Thick film laser induced forward transfer for deposition of thermally and mechanically sensitive materials. Appl. Phys. Lett. 91, 171120–1 (2007).
18.Kattamis, N.T., McDaniel, N.D., Bernhard, S., and Arnold, C.B.: Ambient laser direct-write printing of a patterned organo-metallic electroluminescent device. Org. Electron. 12, 7 (2011).
19.Moaveni, S.: Finite Element Analysis: Theory and Application with Ansys, 3rd ed. (Prentice Hall, Upper Saddle River, NJ, 2007).
20.Dupont, Kapton Polyimide Film Product Information, p. 3.
21.Mostofi, A.: The incorporation of damping in lumped-parameter modelling techniques: Proceedings of the Institution of Mechanical Engineers, Part K. J. Multi-Body Dynam. 213, 11 (1999).
22.Warburton, G.B.: The Dynamic Behaviour of Structures, 2nd ed. (Pergamon Press, Oxford/New York, 1976).
23.Wilson, E.L. and Penzien, J.: Evaluation of orthogonal damping matrices. Int. J. Numer. Methods Eng. 4, 5 (1972).
24.Hall, J.F.: Problems encountered from the use (or misuse) of Rayleigh damping. Earthquake Eng. Struct. Dynam. 35, 525 (2006).
25.Brannon, J.H., Lankard, J.R., Baise, A.I., Burns, F., and Kaufman, J.: Excimer laser etching of polyimide. J. Appl. Phys. 58, 2036 (1985).
26.Küper, S., Brannon, J., and Brannon, K.: Threshold behavior in polyimide photoablation: Single-shot rate measurements and surface-temperature modeling. Appl. Phys., A Solids Surf. 56, 43 (1993).
27.Drucker, D.C. and Prager, W.: Soil mechanics and plastic analysis for limit design. Q. Appl. Math. 10, 157 (1952).
28.Peirce, D., Shih, C.F., and Needleman, A.: A tangent modulus method for rate dependent solids. Comput. Struct. 18, 875 (1984).
29.Krüger, R., König, M., and Schneider, T.: Computation of local energy release rates along straight and curved delamination fronts of unidirectionally laminated DCB and ENF specimens, in Proceedings of the 34th AIAA/ASME/ASCE/AHS/ASC SSDM Conference, 1332 (1993).
30.Hellen, T.K.: On the method of virtual crack extensions. Int. J. Numer. Methods Eng. 9, 187 (1975).
31.Parks, D.M.: The virtual crack extension method for nonlinear material behavior. Comput. Meth. Appl. Mech. Eng. 12, 353 (1977).
32.Li, F.Z., Shih, C.F., and Needleman, A.: A comparison of methods for calculating energy release rates. Eng. Fract. Mech. 21, 405 (1985).
33.Moran, B. and Shih, C.F.: Crack tip and associated domain integrals from momentum and energy balance. Eng. Fract. Mech. 27, 615 (1987).
34.Rybicki, E.F. and Kanninen, M.F.: A finite element calculation of stress intensity factors by a modified crack closure integral. Eng. Fract. Mech. 9, 931 (1977).
35.Shivakumar, K.N., Tan, P.W., and Newman, J.C. Jr.: A virtual crack-closure technique for calculating stress intensity factors for cracked three dimensional bodies. Int. J. Fract. 36, R43 (1988).
36.Krueger, R.: Virtual crack closure technique: History, approach, and applications. Appl. Mech. Rev. 57, 109 (2004).
37.Buchwalter, L.P. and Lacombe, R.H.: Adhesion of polyimide to fluorine-contaminated SiO2 surface. Effect of aminopropyltriethoxysilane on the adhesion. J. Adhes. Sci. Technol. 5, 449 (1991).
38.Buchwalter, L.P., Oh, T.S., and Kim, J.: Adhesion of polyimides to ceramics. Effects of aminopropyltriethoxysilane and temperature and humidity exposure on adhesion. J. Adhes. Sci. Technol. 5, 333 (1991).
39.Mittal, K.L.: Adhesion Measurement of Films and Coatings: Relative Adhesion Measurement for Thin Film Microelectronic Structures. Part II, Vol. 2 (VSP, Boston, 2001), p. 26.
40.Calister, W.D.: Material Science and Engineering: An Introduction, 7th edition. (Wiley, New York, 2007).
41.Hertzberg, R.W.: Deformation and Fracture Mechanisms of Engineering Materials, 4th ed. (John Wiley & Sons, Inc., New York, 1996), p. 225.
42.Argon, A.S.: Theory for the low-temperature plastic deformation of glassy polymers. Philos. Mag. 28, 839 (1973).
43.Boyce, M.C., Parks, D.M., and Argon, A.S.: Large inelastic deformation of glassy polymers. part I: Rate dependent constitutive model. Mech. Mater. 7, 15 (1988).
44.Field, J.E., Walley, S.M., Proud, W.G., Goldrein, H.T., and Siviour, C.R.: Review of experimental techniques for high rate deformation and shock studies. Int. J. Impact Eng. 30, 725 (2004).
45.Harding, E.O.W.J. and Campbell, J.D.: Tensile testing of materials at high impact rates of strain. J. Mech. Eng. Sci. 2, 88 (1960).
46.Hopkinson, B.A.: A method of measuring the pressure produced in the detonation of high explosives or by the impact of bullets. Philos. Trans. R. Soc. London, Ser. A 213, 437 (1914).
47.Gray, G.T.: ASM Handbook Mechanical Testing and Evaluation: Shock Wave Testing of Ductile Materials, Vol. 8 (ASM International, Materials Park, OH, 2000), p. 530.
48.Perzyna, P.: Advances in Applied Mechanics: Fundamental Problems in Viscoplasticity, Vol. 9 (Academic Press, New York, 1966), p. 243.
49.Fabbro, R., Fournier, J., Ballard, P., Devaux, D., and Virmont, J.: Physical study of laser-produced plasma in confined geometry. J. Appl. Phys. 68, 775 (1990).
50.Paraskevopoulos, G., Singleton, D.L., Irwin, R.S., and Taylor, R.S.: Time-resolved reflectivity as a probe of the dynamics of laser ablation of organic polymers. J. Appl. Phys. 70, 1938 (1991).
51.Ediger, M.N. and Pettit, G.H.: Time-resolved reflectivity of ArF laser-irradiated polyimide. J. Appl. Phys. 71, 3510 (1992).
52.Singleton, D.L., Paraskevopoulos, G., and Taylor, R.S.: Dynamics of excimer laser ablation of polyimide determined by time-resolved reflectivity. Appl. Phys., B Photophys. Laser Chem. 50, 227 (1990).
53.Pettit, G.H., Ediger, M.N., Hahn, D.W., Brinson, B.E., and Sauerbrey, R.: Transmission of polyimide during pulsed ultraviolet laser irradiation. Appl. Phys., A Solids Surf. 58, 573 (1994).
54.Schmidt, H., Ihlemann, J., Wolff-Rottke, B., Luther, K., and Troe, J.: Ultraviolet laser ablation of polymers: Spot size, pulse duration, and plume attenuation effects explained. J. Appl. Phys. 83, 5458 (1998).
55.Koren, G.: Temporal measurements of photofragment attenuation at 248 nm in the laser ablation of polyimide in air. Appl. Phys. Lett. 50, 1030 (1987).
56.Bower, A.F.: Applied Mechanics of Solids (CRC Press, New York, 2010), p. 553.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed