Skip to main content

Formation of novel photoluminescent hybrid materials by sequential vapor infiltration into polyethylene terephthalate fibers

  • Halil I. Akyildiz (a1), Michael Lo (a2), Eoghan Dillon (a2), Adam T. Roberts (a3), Henry O. Everitt (a4) and Jesse S. Jur (a5)...

Fibrous polyethylene terephthalate (PET) was modified by organometallic vapor exposure to form hybrid materials with unique photoluminescent characteristics. Using a sequential vapor infiltration (SVI) process, the elongated exposures of trimethylaluminum (TMA) to PET were examined. As the infiltration temperature increased, the evidence of changes in the reaction between the organometallic vapor and the polymer was observed as well as significant changes in the infiltration depth into the polymer fiber, owing to the variation in the reaction mechanisms of the hybrid material formation. At TMA exposures of 60 °C, the mass of the polymer fiber increased by ∼55 wt%, whereas exposures at 150 °C were limited to ∼25 wt% infiltration. Photoluminescence analysis of PET after TMA infiltration shows an intensity increase of up to ∼13x and an increase in red shift with increasing infiltration temperature, attributed to the variations in the reaction mechanism to form the hybrid modification observed through the spectroscopy analysis.

Corresponding author
a) Address all correspondence to this author. e-mail:
Hide All
1. Bonanno, L.M. and Segal, E.: Nanostructured porous silicon-polymer-based hybrids: From biosensing to drug delivery. Nanomedicine 6(10), 1755 (2011).
2. Bouclé, J., Ravirajan, P., and Nelson, J.: Hybrid polymer–metal oxide thin films for photovoltaic applications. J. Mater. Chem. 17(30), 3141 (2007).
3. Sanchez, C., Lebeau, B., Chaput, F., and Boilot, J.P.: Optical properties of functional hybrid organic–inorganic nanocomposites. Adv. Mater. 15(23), 1969 (2003).
4. Floch, H. and Belleville, P.: A scratch-resistant single-layer antireflective coating by a low temperature sol-gel route. J. Sol-Gel Sci. Technol. 1(3), 293 (1994).
5. Wight, A. and Davis, M.: Design and preparation of organic-inorganic hybrid catalysts. Chem. Rev. 102(10), 3589 (2002).
6. Lim, M.H. and Stein, A.: Comparative studies of grafting and direct syntheses of inorganic-organic hybrid mesoporous materials. Chem. Mater. 11(11), 3285 (1999).
7. Judeinstein, P. and Sanchez, C.: Hybrid organic-inorganic materials: A land of multidisciplinarity. J. Mater. Chem. 6(4), 511 (1996).
8. Gong, B., Peng, Q., and Parsons, G.: Conformal organic-inorganic hybrid network polymer thin films by molecular layer deposition using trimethylaluminum and glycidol. J. Phys. Chem. B 115(19), 5930 (2011).
9. Yoon, B., O'Patchen, J., Seghete, D., Cavanagh, A., and George, S.: Molecular layer deposition of hybrid organic-inorganic polymer films using diethylzinc and ethylene glycol. Chem. Vap. Deposition 15(4–6), 112 (2009).
10. Dameron, A., Seghete, D., Burton, B., Davidson, S., Cavanagh, A., Bertrand, J., and George, S.: Molecular layer deposition of alucone polymer films using trimethylaluminum and ethylene glycol. Chem. Mater. 20(10), 3315 (2008).
11. Li, Y., Mannen, S., Schulz, J., and Grunlan, J.: Growth and fire protection behavior of POSS-based multilayer thin films. J. Mater. Chem. 21(9), 3060 (2011).
12. Li, Y., Schulz, J., Mannen, S., Delhom, C., Condon, B., Chang, S., Zammarano, M., and Grunlan, J.: Flame retardant behavior of polyelectrolyte-clay thin film assemblies on cotton fabric. ACS Nano 4(6), 3325 (2010).
13. Akyildiz, H.I., Padbury, R., Parsons, G.N., and Jur, J.S.: Temperature and exposure dependence of hybrid organic-inorganic layer formation by sequential vapor infiltration into polymer fibers. Langmuir 28(44), 15697 (2012).
14. Gong, B., Peng, Q., Jur, J.S., Devine, C.K., Lee, K., and Parsons, G.N.: Sequential vapor infiltration of metal oxides into sacrificial polyester fibers: Shape replication and controlled porosity of microporous/mesoporous oxide monoliths. Chem. Mater. 23(15), 3476 (2011).
15. Gong, B., Spagnola, J.C., and Parsons, G.N.: Hydrophilic mechanical buffer layers and stable hydrophilic finishes on polydimethylsiloxane using combined sequential vapor infiltration and atomic/molecular layer deposition. J. Vac. Sci. Technol. A 30(1), 01A1561 (2012).
16. Lee, S-M., Ischenko, V., Pippel, E., Masic, A., Moutanabbir, O., Fratzl, P., and Knez, M.: An alternative route towards metal-polymer hybrid materials prepared by vapor-phase processing. Adv. Funct. Mater. 21(16), 3047 (2011).
17. Lee, S-M., Pippel, E., Goesele, U., Dresbach, C., Qin, Y., Chandran, C.V., Braeuniger, T., Hause, G., and Knez, M.: Greatly increased toughness of infiltrated spider silk. Science 324(5926), 488 (2009).
18. Lee, S-M., Pippel, E., Moutanabbir, O., Gunkel, I., Thurn-Albrecht, T., and Knez, M.: Improved mechanical stability of dried collagen membrane after metal infiltration. ACS Appl. Mater. Interfaces 2(8), 2436 (2010).
19. Peng, Q., Tseng, Y-C., Darling, S.B., and Elam, J.W.: A route to nanoscopic materials via sequential infiltration synthesis on block copolymer templates. ACS Nano 5(6), 4600 (2011).
20. Tseng, Y-C., Peng, Q., Ocola, L.E., Czaplewski, D.A., Elam, J.W., and Darling, S.B.: Etch properties of resists modified by sequential infiltration synthesis. J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct. 29(6), 06FG01 (2011).
21. Tseng, Y-C., Peng, Q., Ocola, L.E., Elam, J.W., and Darling, S.B.: Enhanced block copolymer lithography using sequential infiltration synthesis. J. Phys. Chem. C 115(36), 17725 (2011).
22. Wilson, C.A., Grubbs, R.K., and George, S.M.: Nucleation and growth during Al2O3 atomic layer deposition on polymers. Chem. Mater. 17(23), 5625 (2005).
23. Jur, J.S., Spagnola, J.C., Lee, K., Gong, B., Peng, Q., and Parsons, G.N.: Temperature-dependent subsurface growth during atomic layer deposition on polypropylene and cellulose fibers. Langmuir 26(11), 8239 (2010).
24. Sun, Y., Padbury, R.P., Akyildiz, H.I., Goertz, M.P., Palmer, J.A., and Jur, J.S.: Influence of subsurface hybrid material growth on the mechanical properties of atomic layer deposited thin films on polymers. Chem. Vap. Deposition 19(4–6), 134141 (2013).
25. Poodt, P., Lankhorst, A., Roozeboom, F., Spee, K., Maas, D., and Vermeer, A.: High‐speed spatial atomic‐layer deposition of aluminum oxide layers for solar cell passivation. Adv. Mater. 22(32), 3564 (2010).
26. Peng, Q., Tseng, Y-C., Darling, S.B., and Elam, J.W.: Nanoscopic patterned materials with tunable dimensions via atomic layer deposition on block copolymers. Adv. Mater. 22(45), 5129 (2010).
27. Mary, D., Albertini, M., and Laurent, C.: Understanding optical emissions from electrically stressed insulating polymers: Electroluminescence in poly (ethylene terephthalate) and poly (ethylene 2, 6-naphthalate) films. J. Phys. D: Appl. Phys. 30(2), 171 (1997).
28. Teyssedre, G., Mary, D., and Laurent, C.: Analysis of the luminescence decay following excitation of polyethylene naphthalate films by an electric field. J. Phys. D: Appl. Phys. 31(3), 267 (1998).
29. Kim, Y., Davis, R., Cain, A., and Grunlan, J.: Development of layer-by-layer assembled carbon nanofiber-filled coatings to reduce polyurethane foam flammability. Polymer 52(13), 2847 (2011).
30. Takai, Y., Mizutani, T., and Ieda, M.: Photoluminescence study in polymers. Jpn. J. Appl. Phys. 17, 651 (1978).
31. Teyssedre, G., Menegotto, J., and Laurent, C.: Temperature dependence of the photoluminescence in poly (ethylene terephthalate) films. Polymer 42(19), 8207 (2001).
32. Spagnola, J.C., Gong, B., Arvidson, S.A., Jur, J.S., Khan, S.A., and Parsons, G.N.: Surface and sub-surface reactions during low temperature aluminium oxide atomic layer deposition on fiber-forming polymers. J. Mater. Chem. 20(20), 4213 (2010).
33. Parsons, G.N., Atanasov, S.E., Dandley, E.C., Devine, C.K., Gong, B., Jur, J.S., Lee, K., Oldham, C.J., Peng, Q., and Spagnola, J.C.: Mechanisms and reactions during atomic layer deposition on polymers. Coord. Chem. Rev. 257(23), 3323 (2013).
34. Pullumbi, P., Bouteiller, Y., and Manceron, L.: The vibrational spectrum of isolated AlH4−: An infrared matrix isolation and ab initio study. J. Chem. Phys. 101(5), 3610 (1994).
35. Wang, X., Andrews, L., Tam, S., DeRose, M.E., and Fajardo, M.E.: Infrared spectra of aluminum hydrides in solid hydrogen: Al2H4 and Al2H6 . J. Am. Chem. Soc. 125(30), 9218 (2003).
36. Lin, S-Y. and Lee, Y-P.: Infrared absorption of gaseous benzoyl radical C6H5CO recorded with a step-scan Fourier-transform spectrometer. J. Phys. Chem. A 116(24), 6366 (2012).
37. Jacox, M.E.: The reaction of F atoms with acetaldehyde and ethylene oxide. Vibrational spectra of the CH3 CO and CH2CHO free radicals trapped in solid argon. Chem. Phys. 69(3), 407 (1982).
38. von Ahsen, S., Willner, H., and Francisco, J.S.: Thermal decomposition of peroxy acetyl nitrate CHC (O) OONO. J. Chem. Phys. 121, 2048 (2004).
39. Bruckmann, P.W. and Willner, H.: Infrared spectroscopic study of peroxyacetyl nitrate (PAN) and its decomposition products. Environ. Sci. Technol. 17(6), 352 (1983).
40. Zhang, B., Zhang, J., and Liu, K.: Imaging the “missing” bands in the resonance-enhanced multiphoton ionization detection of methyl radical. J. Chem. Phys. 122, 104310 (2005).
41. Thompson, W.E. and Jacox, M.E.: The infrared spectra of the NH-d cations trapped in solid neon. J. Chem. Phys. 114, 4846 (2001).
42. Johnson, J.E.: X‐ray diffraction studies of the crystallinity in polyethylene terephthalate. J. Appl. Polym. Sci. 2(5), 205 (1959).
43. Daubeny, R.d.P. and Bunn, C.: The crystal structure of polyethylene terephthalate. Proceedings of the royal society of London. Series A. Mathematical and Physical Sciences 226(1167), 531 (1954).
44. Bower, D.I.: The Vibrational Spectroscopy of Polymers (Cambridge University Press, Cambridge, UK, 1992).
45. Archibong, E.F. and St-Amant, A.: Molecular structure of the AlO2 dimer, Al2O4 . J. Phy Chem. A 102(34), 6877 (1998).
46. Kvisle, S. and Rytter, E.: Infrared matrix isolation spectroscopy of trimethylgallium, trimethylaluminium and triethylaluminium. Spectrochim. Acta, Part A 40(10), 939 (1984).
47. O'Brien, R. and Ozin, G.: A gas-phase Raman study of trimethylaluminium and trimethylboron monomers. J. Chem. Soc. A 1136 (1971).
48. Burie, J-R., Boussac, A., Boullais, C., Berger, G., Mattioli, T., Mioskowski, C., Nabedryk, E., and Breton, J.: FTIR spectroscopy of UV-generated quinone radicals: evidence for an intramolecular hydrogen atom transfer in ubiquinone, naphthoquinone, and plastoquinone. J. Phy Chem. A 99(12), 4059 (1995).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed